The rapid increase of the world population constantly demands more food production from agricultural soils. This causes conflicts, since at the same time strong interest arises on novel bio-based products from agriculture, and new perspectives for rural landscapes with their valuable ecosystem services. Agriculture is in transition to fulfill these demands. In many countries, conventional farming, influenced by post-war food requirements, has largely been transformed into integrated and sustainable farming. However, since it is estimated that agricultural production systems will have to produce food for a global population that might amount to 9.1 billion by 2050 and over 10 billion by the end of the century, we will require an even smarter use of the available land, including fallow and derelict sites. One of the biggest challenges is to reverse non-sustainable management and land degradation. Innovative technologies and principles have to be applied to characterize marginal lands, explore options for remediation and re-establish productivity. With view to the heterogeneity of agricultural lands, it is more than logical to apply specific crop management and production practices according to soil conditions. Cross-fertilizing with conservation agriculture, such a novel approach will provide (1) increased resource use efficiency by producing more with less (ensuring food security), (2) improved product quality, (3) ameliorated nutritional status in food and feed products, (4) increased sustainability, (5) product traceability and (6) minimized negative environmental impacts notably on biodiversity and ecological functions. A sustainable strategy for future agriculture should concentrate on production of food and fodder, before utilizing bulk fractions for emerging bio-based products and convert residual stage products to compost, biochar and bioenergy. The present position paper discusses recent developments to indicate how to unlock the potentials of marginal land.
This long-term field trial aimed at remediating a Cu-contaminated soil to promote crop production and soil functions at a former wood preservation site. Twenty-eight field plots with total topsoil Cu in the 198-1,169 mg kg −1 range were assessed. Twenty-four plots (OMDL) were amended in 2008 with a compost (made of pine bark chips and poultry manure, OM, 5% w/w) and dolomitic limestone (DL, 0.2%), and thereafter annually phytomanaged with a sunflower-tobacco crop rotation. In 2013, one untreated plot (UNT) was amended with a green waste compost (GW, 5%) whereas 12 former OMDL plots received a second compost dressing using this green waste compost (OM2DL, 5%). In 2011, one plot was amended with the Carmeuse basic slag (CAR, 1%) and another plot with a P-spiked Linz-Donawitz basic slag (PLD, 1%). Thus six soil treatments, i.e., UNT, OMDL, OM2DL, GW, CAR, and PLD, were cultivated in 2016 with sunflower (Helianthus annuus L. cv Ethic). Shoots were harvested and their ionome analyzed. At high soil Cu contamination, the 1M NH 4 NO 3-extractable vs. total soil Cu ratio ranked in decreasing order: Unt (2.35) > CAR (1.02), PLD (0.83) > GW (0.58), OMDL (0.44), OM2DL (0.37), indicating a lower Cu extractability in the compost-amended plots. All amendments improved the soil nutrient status and the soil pH, which was slightly acidic in the UNT soil. Total organic C and N and extractable P contents peaked in the OM2DL soils. Both OMDL and OM2DL treatments led to higher shoot DW yields and Cu removals than the GW, CAR, and PLD treatments. Shoot DW yields decreased as total topsoil Cu rose in the OMDL plots, on the contrary to the OM2DL plots, demonstrating the benefits to repeat compost application after 5 years. Shoot Cu concentrations notably of OMDL and OM2DL plants fitted into their common range and can be used by biomass Mench et al. Phytomanagement of Cu-Contaminated Soils processing technologies and oilseeds as well. In overall, there is a net gain in soil physico-chemical properties and underlying soil functions. HIGHLIGHTS-Compost incorporated into Cu-contaminated soils improves the sunflower growth.-Soil organic matter increases in compost-amended soils.-Extractable soil Cu decreases in compost-amended soils.-Shoot Cu removal by sunflower reaches 26-88 g Cu ha −1 year −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.