Unmanned aerial vehicle (UAV) navigation has recently been the focus of many studies. The most challenging aspect of UAV navigation is maintaining accurate and reliable pose estimation. In outdoor environments, global navigation satellite systems (GNSS) are typically used for UAV localization. However, relying solely on GNSS might pose safety risks in the event of receiver malfunction or antenna installation error. In this research, an unmanned aerial system (UAS) employing the Applanix APX15 GNSS/IMU board, a Velodyne Puck LiDAR sensor, and a Sony a7R II high-resolution camera was used to collect data for the purpose of developing a multi-sensor integration system. Unfortunately, due to a malfunctioning GNSS antenna, there were numerous prolonged GNSS signal outages. As a result, the GNSS/INS processing failed after obtaining an error that exceeded 25 km. To resolve this issue and to recover the precise trajectory of the UAV, a GNSS/INS/LiDAR integrated navigation system was developed. The LiDAR data were first processed using the optimized LOAM SLAM algorithm, which yielded the position and orientation estimates. Pix4D Mapper software was then used to process the camera images in the presence of ground control points (GCPs), which resulted in the precise camera positions and orientations that served as ground truth. All sensor data were timestamped by GPS, and all datasets were sampled at 10 Hz to match those of the LiDAR scans. Two case studies were considered, namely complete GNSS outage and assistance from GNSS PPP solution. In comparison to the complete GNSS outage, the results for the second case study were significantly improved. The improvement is described in terms of RMSE reductions of approximately 51% and 78% for the horizontal and vertical directions, respectively. Additionally, the RMSE of the roll and yaw angles was reduced by 13% and 30%, respectively. However, the RMSE of the pitch angle was increased by about 13%.
Traditional navigation systems rely on GNSS/inertial navigation system (INS) integration, in which the INS can provide reliable positioning during short GNSS outages. However, if the GNSS outage persists for prolonged periods of time, the performance of the system will be solely dependent on the INS, which can lead to a significant drift over time. As a result, the need to integrate additional onboard sensors is essential. This study proposes a robust loosely coupled (LC) integration between the INS and LiDAR simultaneous mapping and localization (SLAM) using an extended Kalman filter (EKF). The proposed integrated navigation system was tested for three different driving scenarios and environments using the raw KITTI dataset. The first scenario used the KITTI residential datasets, totaling 48 min, while the second case study considered the KITTI highway datasets, totaling 7 min. For both case studies, a complete absence of the GNSS signal was assumed for the whole trajectory of the vehicle in all drives. In contrast, the third case study considered the use of minimal assistance from GNSS, which mimics the intermittent receipt and loss of GNSS signals for different driving environments. The positioning results of the proposed INS/LiDAR SLAM integrated system outperformed the performance of the INS for the residential datasets with an average reduction in the root mean square error (RMSE) in the horizontal and up directions of 88% and 32%, respectively. For the highway datasets, the RMSE reductions were 70% and 0.2% for the horizontal and up directions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.