Melanoma, most threatening type of skin cancer, is on the rise. In this paper an implementation of a deep-learning system on a computer server, equipped with graphic processing unit (GPU), is proposed for detection of melanoma lesions. Clinical (non-dermoscopic) images are used in the proposed system, which could assist a dermatologist in early diagnosis of this type of skin cancer. In the proposed system, input clinical images, which could contain illumination and noise effects, are preprocessed in order to reduce such artifacts. Afterward, the enhanced images are fed to a pre-trained convolutional neural network (CNN) which is a member of deep learning models. The CNN classifier, which is trained by large number of training samples, distinguishes between melanoma and benign cases. Experimental results show that the proposed method is superior in terms of diagnostic accuracy in comparison with the state-of-the-art methods.
Population of old generation is growing in most countries. Many of these seniors are living alone at home. Falling is among the most dangerous events that often happen and may need immediate medical care. Automatic fall detection systems could help old people and patients to live independently. Vision-based systems have advantage over wearable devices. These visual systems extract some features from video sequences and classify fall and normal activities. These features usually depend on camera's view direction. Using several cameras to solve this problem increases the complexity of the final system. In this paper, we propose to use variations in silhouette area that are obtained from only one camera. We use a simple background separation method to find the silhouette. We show that the proposed feature is view invariant. Extracted feature is fed into a support vector machine for classification. Simulation of the proposed method using a publicly available dataset shows promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.