Abstract.A generic system dynamics watershed (GSDW) model is developed and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada, and one natural watershed (boreal forest) located in Saskatchewan, Canada, to simulate various hydrological processes in reconstructed and natural watersheds. This paper uses the root mean square error (RMSE), the mean absolute relative error (MARE), and the correlation coefficient (R) as the main performance indicators, in addition to the visual comparison. For the South Bison Hills (SBH), South West Sand Storage (SWSS) and Old Aspen (OA) simulated soil moisture, the RMSE values ranges between 2.5-4.8 mm, and the MARE ranges from 7% to 18%, except for the D2-cover it was 26% for the validation year. The R statistics ranges from 0.3 to 0.77 during the validation period. The error between the measured and simulated cumulative actual evapotranspiration (AET) flux for the SWSS, SBH, and the OA sites were 2%, 5%, and 8%, respectively. The developed GSDW model enables the investigation of the utility of different soil cover designs and evaluation of their performance. The model is capable of capturing the dynamics of water balance components, and may used to conduct short-and longterm predictions under different climate scenarios.
Abstract:The oil sands industry has committed to returning the mine sites to a productive condition. The reconstructed soil covers must have sufficient available water holding capacity (AWHC) to supply enough moisture over the growing season, to promote vegetation. In order to assess the sustainability of various soil cover alternatives, a generic, system dynamic watershed model entitled GSDW was used along with the available historical meteorological records to estimate the maximum soil moisture deficit and annual evapotranspiration fluxes. A probabilistic framework was adopted; consequently, frequency curves of the maximum annual moisture deficit values are constructed and used to assess the probability that various reconstructed and natural watersheds can provide the associated moisture demands. In general, the study showed a tendency for the reconstructed watershed to provide less moisture for evapotranspiration than natural systems. Watersheds of various soil types, layering, thicknesses and topography were studied. The gained knowledge was used to predict the possible performance of a hypothetical reclamation cover. The results indicated that the hypothetical cover performed in a similar manner to the thickest existing soil cover which confirmed a high probability of that cover to survive under the same existing climatic conditions. Moreover, this probabilistic framework was found to be useful for integrating information gained from natural watersheds (e.g. the canopy of mature natural systems and transfer the results to the reconstructed system). The results show that the canopy influenced the moisture deficit regime positively which signifies a greater possibility that reconstructed covers will adapt to vegetation type. In brief, the adopted approach enables better understanding of the response of reconstructed systems via multiple simulations of 'what-if' scenarios using different soil/vegetation alternatives.
Abstract. The mining of oil sands in northern Alberta, Canada, involves the stripping and salvage of surface soil layers to gain access to the oil mines. The oil sands industry has committed to reconstructing these disturbed watersheds to replicate the performance of the natural soil horizons and to reproduce the various functions of natural watersheds. The selection of the texture and thickness of the reconstructed soil cover layers is based primarily on the concept that all covers must have sufficient moisture for vegetation over the growing season. Assessment of the hydrological performance of the reconstructed soil covers is crucial to select the best cover alternative. A generic system dynamics watershed (GSDW) model is developed, based on the existing site-specific SDW model, and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada; and one natural watershed (boreal forest) located in Saskatchewan, Canada; to simulate the various hydrological processes; in particular, soil moisture patterns and actual evapotranspiration, in reconstructed and natural watersheds. The model is capable of capturing the dynamics of the water balance components in both reconstructed and natural watersheds. The developed GSDW model provides a vital tool, which enables the investigation of the utility of different soil cover alternative designs and evaluation of their performance. Moreover, the model can be used to conduct short- and long- term predictions under different climate scenarios.
Abstract:This study aims at developing a generalized understanding of the sensitivity of soil moisture patterns in reconstructed watersheds, in northern Alberta, to changes in the projected precipitation in the twenty-first century. The GSDW model is applied to three watersheds using climate scenarios generated using daily precipitation and air temperature output from a global climate model (CGCM3), under A2 and B1 emission scenarios, to simulate the corresponding soil moisture. CGCM3 results indicate an increase in the mean annual temperature for Fort McMurray, Alberta of 3Ð3 (A2) and 2Ð4°C (B1), and an increase in the predicted annual precipitation of 34% (A2) and 8Ð6% with A2 and B1 emission scenarios, respectively. The GSDW model is used, along with onsite historical data, to downscale A2 and B1 emission scenarios and to evaluate the future hydrological performance of the designated watersheds with respect to soil moisture deficit and actual evapotranspiration using a probabilistic framework. The forecasted maximum soil moisture deficit values based on A2 and B1 emission scenarios are expected to decrease compared to those based on the current, largely because of the expected increase in precipitation rates, associated with an expected increase in evapotranspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.