This paper presents the results of finite element (FE) analysis of axially loaded square hollow structural steel (HSS) columns, strengthened with polymer-mortar materials. Three-dimensional nonlinear FE model of HSS slender columns were developed using thin-shell element, considering geometric and material nonlinearity. The polymer-mortar strengthening layer was incorporated using additional layers of the shell element. The FE model has been performed and then verified against experimental results obtained by the authors [1]. Good agreement was observed between FE analysis and experimental results. The model was then used in an extended parametric study to examine selected AISC square HSS columns with different cross-sectional geometries, slenderness ratios, thicknesses of mortar strengthening layer, overall geometric imperfections, and level of residual stresses. The effectiveness of polymer-mortar in increasing the column’s axial strength is observed. The study also demonstrated that polymer-mortar strengthening materials is more effective for higher slenderness ratios. An equivalent steel thickness is also accounted for the mortar strengthened HSS columns to discuss the effectiveness of polymer-mortar strengthening system. The polymer-mortar strengthening system is more effective for HSS columns with higher levels of out-of-straightness. Level of residual stress has a slight effect on the gain in the column’s axial strength strengthened with polymer-mortar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.