Problem statement:To investigate the effect of nutrient application on agronomical characteristic and water use efficiency under water deficit stress of hybrid maize 704, an experiment was arranged in a split plot factorial based on a complete randomized block design with four replicates in the research station of Islamic Azad University-Arak Branch, Iran in 2007. Approach: Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V 8 ), stage of blister (R 2 ) and stage of filling grain in the main plot. Combined levels of selenium treatment (without and with application 20 g ha −1 ) were applied 2 weeks before execution of water stress treatment and micronutrients (without and with application) that was provided by specific fertilizer for maize called "Biomin", which contained Fe, Zn, Cu, Mn, B, Mo and Mg in the form of foliar application at six-leaf stage and 1 week before tasseling stage at the rate of 2 L ha −1 were situated in sub plots. Results: Results indicated that effect of water deficit stress on 1000 grain weight, grain yield, harvest index and water use efficiency at different growth stages was significant at 1% level. Water deficit stress decreased grain yield 33% in grain filling stage as compared with control. Using selenium increased mentioned traits but the increase was non significant. Effects of twofold interactions of water deficit stress and selenium showed that using selenium in water deficit stress condition increased measured traits as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. In between treatments of water deficit stress, highest grain yield (8159.33 kg ha −1 ) was obtained from combined treatment of water deficit stress at eight-leaf stage with selenium application and without micronutrients which compared with treatment of irrigation equal to crop water requirement, without selenium and microelements did not differ significant. Conclusion: According to the results of experiment, using microelements in optimum water availability and using selenium in water deficit stress condition increased mentioned traits as compared to treatments control.
The purpose of the present study was to examine the expression of the Myc network proteins c-Myc, Mad1 and Max in normal cells under different growth and differentiation conditions. A dominant view has been that Mad1 as a c-Myc antagonist plays a role in growth inhibition linked to differentiation. Of particular interest to us was therefore to study the regulation of Mad1 in cells undergoing differentiation in the absence of growth cessation. To do so we utilized normal B lymphocytes isolated from peripheral blood. The cells were induced to concomitant proliferation and differentiation by stimulation with a combination of anti-IgM antibodies (anti-mu) and the phorbol ester TPA. Thus, by 72 h of stimulation the percentage of plasmablasts increased from 3 to 17%, and the percentage of lymphocytes decreased from 89 to 27%. The most intriguing observation we made using this cell system was a pronounced coinduction of Mad1 and c-Myc. The levels of c-Myc and Mad1 mRNAs and proteins increased within 3 h of anti-mu stimulation, and the levels were further enhanced by TPA. Furthermore, the expressions of both c-Myc and Mad1 were reduced by forskolin, which also inhibited the anti-mu + TPA driven growth and differentiation of the B lymphocytes. The level of Max remained virtually unchanged. Taken together, our results indicate that a high level of Mad1 in normal human B cells is linked to differentiation and not to growth inhibition. Furthermore, the results demonstrate that Mad1 and c-Myc are not necessarily expressed in a reciprocal manner, which underlines an independent role of Mad1 unrelated to its function as a c-Myc antagonist.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.