The high variability of the human immunodeficiency virus (HIV) is an important cause of HIV resistance to reverse transcriptase and protease inhibitors. There are many variants of HIV type 1 (HIV-1) that can be used to model sequence-resistance relationships. Machine learning methods are widely and successfully used in new drug discovery. An emerging body of data regarding the interactions of small drug-like molecules with their protein targets provides the possibility of building models on “structure-property” relationships and analyzing the performance of various machine-learning techniques. In our research, we analyze several different types of descriptors in order to predict the resistance of HIV reverse transcriptase and protease to the marketed antiretroviral drugs using the Random Forest approach. First, we represented amino acid sequences as a set of short peptide fragments, which included several amino acid residues. Second, we represented nucleotide sequences as a set of fragments, which included several nucleotides. We compared these two approaches using open data from the Stanford HIV Drug Resistance Database. We have determined the factors that modulate the performance of prediction: in particular, we observed that the prediction performance was more sensitive to certain drugs than a type of the descriptor used.
A lot of high quality data on the biological activity of chemical compounds are required throughout the whole drug discovery process: from development of computational models of the structure–activity relationship to experimental testing of lead compounds and their validation in clinics. Currently, a large amount of such data is available from databases, scientific publications, and patents. Biological data are characterized by incompleteness, uncertainty, and low reproducibility. Despite the existence of free and commercially available databases of biological activities of compounds, they usually lack unambiguous information about peculiarities of biological assays. On the other hand, scientific papers are the primary source of new data disclosed to the scientific community for the first time. In this study, we have developed and validated a data-mining approach for extraction of text fragments containing description of bioassays. We have used this approach to evaluate compounds and their biological activity reported in scientific publications. We have found that categorization of papers into relevant and irrelevant may be performed based on the machine-learning analysis of the abstracts. Text fragments extracted from the full texts of publications allow their further partitioning into several classes according to the peculiarities of bioassays. We demonstrate the applicability of our approach to the comparison of the endpoint values of biological activity and cytotoxicity of reference compounds.
Text analysis can help to identify named entities (NEs) of small molecules, proteins, and genes. Such data are very important for the analysis of molecular mechanisms of disease progression and development of new strategies for the treatment of various diseases and pathological conditions. The texts of publications represent a primary source of information, which is especially important to collect the data of the highest quality due to the immediate obtaining information, in comparison with databases. In our study, we aimed at the development and testing of an approach to the named entity recognition in the abstracts of publications. More specifically, we have developed and tested an algorithm based on the conditional random fields, which provides recognition of NEs of (i) genes and proteins and (ii) chemicals. Careful selection of abstracts strictly related to the subject of interest leads to the possibility of extracting the NEs strongly associated with the subject. To test the applicability of our approach, we have applied it for the extraction of (i) potential HIV inhibitors and (ii) a set of proteins and genes potentially responsible for viremic control in HIV-positive patients. The computational experiments performed provide the estimations of evaluating the accuracy of recognition of chemical NEs and proteins (genes). The precision of the chemical NEs recognition is over 0.91; recall is 0.86, and the F1-score (harmonic mean of precision and recall) is 0.89; the precision of recognition of proteins and genes names is over 0.86; recall is 0.83; while F1-score is above 0.85. Evaluation of the algorithm on two case studies related to HIV treatment confirms our suggestion about the possibility of extracting the NEs strongly relevant to (i) HIV inhibitors and (ii) a group of patients i.e., the group of HIV-positive individuals with an ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral therapy. Analysis of the results obtained provides insights into the function of proteins that can be responsible for viremic control. Our study demonstrated the applicability of the developed approach for the extraction of useful data on HIV treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.