Computer simulations of the totally asymmetric simple-exclusion process on chains with a double-chain section in the middle are performed in the case of random-sequential update. The outer ends of the chain segments connected to the middle double-chain section are open, so that particles are injected at the left end with rate alpha and removed at the right end with rate beta. At the branching point of the graph (the left end of the middle section) the particles choose with equal probability 1/2 which branch to take and then simultaneous motion of the particles along the two branches is simulated. With the aid of a simple theory, neglecting correlations at the junctions of the chain segments, the possible phase structures of the model are clarified. Density profiles and nearest-neighbor correlations in the steady states of the model at representative points of the phase diagram are obtained and discussed. Cross correlations are found to exist between equivalent sites of the branches of the middle section whenever they are in a coexistence phase.
We study an one-dimensional stochastic model of vehicular traffic on open segments of a single-lane road of finite size L. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. This dynamics has been previously used by Bunzarova and Pesheva [Phys. Rev. E 95, 052105 (2017)] for an one-dimensional model of irreversible aggregation. The model was shown to have three stationary phases: a many-particle one, MP, a phase with completely filled configuration, CF, and a boundary perturbed MP+CF phase, depending on the values of the particle injection (α), ejection (β) and hopping (p) probabilities.Here we extend the results for the stationary properties of the MP+CF phase, by deriving exact expressions for the local density at the first site of the chain and the probability P(1) of a completely jammed configuration. The unusual phase transition, characterized by jumps in both the bulk density and the current (in the thermodynamic limit), as α crosses the boundary α = p from the MP to the CF phase, is explained by the finite-size behavior of P(1).By using a random walk theory, we find that, when α approaches from below the boundary α = p, three different regimes appear, as the size L → ∞:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.