Commensal microbiota inhabit all the mucosal surfaces of the human body. It plays significant roles during homeostatic conditions, and perturbations in numbers and/or products are associated with several pathological disorders. Angiogenesis, the process of new vessel formation, promotes embryonic development and critically modulates several biological processes during adulthood. Indeed, deregulated angiogenesis can induce or augment several pathological conditions. Accumulating evidence has implicated the angiogenic process in various microbiota-associated human diseases. Herein, we critically review diseases that are regulated by microbiota and are affected by angiogenesis, aiming to provide a broad understanding of how angiogenesis is involved and how microbiota regulate angiogenesis in microbiota-associated human conditions.
The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [3H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.
A series of 1-cyclopropyl-8-methoxy-quinazoline-2,4-diones was synthesized and evaluated for lowering the ratio of the antimicrobial MIC in gyrase resistance mutants to that in the gyr ؉ (wild type) using isogenic strains of Escherichia coli. Dione features that lowered this ratio were a 3-amino group and C-7 ring structure (3-aminomethyl pyrrolidinyl < 3-aminopyrrolidinyl < diazobicyclo < 2-ethyl piperazinyl). The wild-type MIC was also lowered. With the most active derivative tested, many gyrA resistance mutant types were as susceptible as, or more susceptible than, wild-type cells. The most active 2,4-dione derivatives were also more active with two quinolone-resistant gyrB mutants than with wild-type cells. With respect to lethality, the most bacteriostatic 2,4-dione killed E. coli at a rate that was affected little by a gyrA resistance mutation, and it exhibited a rate of killing similar to its cognate fluoroquinolone at 10؋ the MIC. Population analysis with wild-type E. coli applied to agar showed that the mutant selection window for the most active 2,4-dione was narrower than that for the cognate fluoroquinolone or for ciprofloxacin. These data illustrate a new approach to guide early-stage antimicrobial selection. Use of antimutant activity (i.e., ratio of the antimicrobial MIC in a mutant strain to the antimicrobial MIC in a wild-type strain) as a structure-function selection criterion can be combined with traditional efforts aimed at lowering antimicrobial MICs against wild-type organisms to more effectively afford lead molecules with activity against both wild-type and mutant cells.Fluoroquinolones are lethal antibacterial agents that are widely used for many bacterial infections; with some diseases, such as multidrug-resistant tuberculosis, they are sometimes considered to be agents of last resort. However, fluoroquinolone use is threatened by an increasing prevalence of resistance, now seen with almost every bacterial species treated. Even highly susceptible species, such as Haemophilus influenzae, Neisseria gonorrhoeae, and Streptococcus agalactiae, are exhibiting quinolone resistance (11,21,35,36). A common strategy to bypass resistance is to seek new derivatives with increased ability to kill wild-type (susceptible) cells. Unfortunately, even highly lethal compounds can leave resistant mutants alive and able to amplify (13). As an alternative, we suggested that the choice of lead compounds in antibiotic discovery be guided toward those that have a very narrow mutant selection window, i.e., the MIC approximates the mutant prevention concentration (MPC), a measure of the mutant subpopulation MIC (5, 40, 41). With some gram-positive pathogens, particularly Streptococcus pneumoniae, this criterion has been approached using dual-targeted fluoroquinolones that have similar activities against both gyrase and DNA topoisomerase IV (8, 22-25, 30, 31). In this situation, the MIC of the less-susceptible target approximates the MPC, which creates a narrow window and restricts the recovery of resistant mutants...
Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.