A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprised of sensors, related hardware and software for multimodal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in twenty one volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of 5 subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews, and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines, and study of the relationship between swallowing/chewing and ingestive behavior.
The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare use of Support Vector Machines (SVM), Multinomial Logistic Discrimination (MLD), and Multi-Layer Perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a four-hour stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (~95%), while reducing the running time and the memory requirements by a factor of >103. Comparison of perminute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE=0.78 kcal/min for SVM and MLD activity classification, 0.77 kcal/min for MLP, vs. RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE prediction on a wearable platform.
Actigraphy offers one of the best-known alternatives to polysomnography for sleep-wake identification. The advantages of actigraphy include high accuracy, simplicity of use and low intrusiveness. These features allow the use of actigraphy for determining sleep-wake states in such highly sensitive groups as infants. This study utilizes a motion sensor (accelerometer) for a dual purpose: to determine an infant's position in the crib and to identify sleep-wake states. The accelerometer was positioned over the sacral region on the infant's diaper, unlike commonly used attachment to an ankle. Opposed to broadly used discriminant analysis, this study utilized logistic regression and neural networks as predictors. The accuracy of predicted sleep-wake states was established in comparison to the sleep-wake states recorded by technicians in a polysomnograph study. Both statistical and neural predictors of this study provide an accuracy of approximately 77-92% which is comparable to similar studies achieving prediction rates of 85-95%, thus validating the suggested methodology. The results support the use of body motion as a simple and reliable method for determining sleep-wake states in infants. Nonlinear mapping capabilities of the neural network benefit the accuracy of sleep-wake state identification. Utilization of the accelerometer for the dual purpose allows us to minimize intrusiveness of home infant monitors.
These results suggest that foot acceleration combined with insole pressure measurement, when used in an activity-specific branched model, can accurately estimate the EE associated with common daily postures and activities. The accuracy and unobtrusiveness of a footwear-based device may make it an effective physical activity monitoring tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.