Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.
Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.
The critically endangered population of Far Eastern leopards ( Panthera pardus orientalis) may number as few as 60 individuals and is at risk from stochastic processes such as infectious disease. During May 2015, a case of canine distemper virus (CDV) was diagnosed in a wild leopard exhibiting severe neurologic disease in the Russian territory of Primorskii Krai. Amplified sequences of the CDV hemagglutinin gene and phosphoprotein gene aligned within the Arctic-like clade of CDV, which includes viruses from elsewhere in Russia, China, Europe, and North America. Histologic examination of cerebral tissue revealed perivascular lymphoid cuffing and demyelination of the white matter consistent with CDV infection. Neutralizing antibodies against CDV were detected in archived serum from two wild Far Eastern leopards sampled during 1993-94, confirming previous exposure in the population. This leopard population is likely too small to maintain circulation of CDV, suggesting that infections arise from spillover from more-abundant domestic or wild carnivore reservoirs. Increasing the population size and establishment of additional populations of leopards would be important steps toward securing the future of this subspecies and reducing the risk posed by future outbreaks of CDV or other infectious diseases.
Seroprevalence to nine different virus pathogens was estimated for Russian big cats (Amur tiger (Panthera tigris altaica Temminck, 1844) and far-eastern leopard (Panthera pardus orientalis (Schiegel, 1857))) in Southern Primorie, Russia (n = 25), in 2008–2016. Serum samples from smaller cats (Eurasian lynx (Lynx lynx (Linnaeus, 1758)) and far-eastern wildcat (leopard cat) (Prionailurus bengalensis euptilurus (Elliot, 1871))) were also tested for these pathogens (n = 19) during the same period. Felids of Russian Southern Primorie showed seroprevalence to eight out of nine tested pathogens, including highly dangerous feline immunodeficiency virus, feline leukemia virus, and canine distemper virus. Antibodies to feline panleukopenia virus were found to be much more widespread in cats (45%) than antibodies to any other virus. They were detected in samples taken from tigers, leopards, and far-eastern wildcats but not lynxes. Antibodies to pseudorabies virus were detected only in Amur tiger (29%), whose main prey is the most common carrier of the virus (wild boar), unlike for the other studied cats’ species.
Translocation of wildlife as a means of reintroducing or reinforcing threatened populations is an important conservation tool but carries health risks for the translocated animals and their progeny, as well as wildlife, domestic animals and humans in the release area. Disease risk analyses (DRA) are used to identify, prioritize and design mitigation strategies to address these threats. Here, we use a DRA undertaken for Amur leopards (Panthera pardus orientalis) to illustrate how specific methodology can optimize mitigation strategy design. A literature review identified a total of 98 infectious hazards and 28 non-infectious hazards. Separate analyses were undertaken for disease risks in leopards from hazards of source origin (captive zoo collections and the transit pathway to the Russian Far East), or of destination origin (in breeding enclosures and wider release areas); and for disease risks in other wildlife, domesticated species or humans, similarly from hazards of source or destination origin. Hazards were assessed and ranked as priority 1, priority 2, priority 3 or low priority in each of the defined scenarios. In addition, we undertook a generic assessment of stress on individual leopards. We use three examples to illustrate the process: Chlamydophila felis, canine distemper virus (CDV) and feline immunodeficiency virus (FIV). We found that many potentially expensive screening procedures could be performed prior to export of leopards, putting the onus of responsibility onto the zoo sector, for which access to diagnostic testing facilities is likely to be optimal. We discuss how our methods highlighted significant data gaps relating to pathogen prevalence in the Russian Far East and likely future unpredictability, in particular with respect to CDV. There was emphasis at all stages on record keeping, meticulous planning, design, staff training and enclosure management, which are relatively financially inexpensive. Actions to minimize stress featured at all time points in the strategy and also focussed on planning, design and management. S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Lewis J, Tomlinson A, Gilbert M, et al. Assessing the health risks of reintroduction: The example of the Amur leopard, Panthera pardus orientalis. Transbound Emerg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.