Natural selection has inspired researchers to develop and apply several intelligent optimization techniques in the past few decades. Generally, in artificial intelligence optimization, the particles follow a local or global best particle until finding an acceptable solution. In well‐ developed optimization techniques, such as swarm optimization (PSO) and the firefly algorithm (FA), getting around the initial optimal value of the group and randomly checking the effect of the surrounding points may lead to a better solution than the initial optimal value. The present work was inspired by the fascinating movement of Garra Rufa fish between two immersed legs during a regular “fish massage session.” A new optimization approach is proposed and modeled based on the movements of Garra Rufa fish, in which the particles are separated into groups, and the best optimal value leads each group for the group. Also, some of these particles are allowed to change groups depending on the fitness of the leaders of the groups. The suggested strategy is then compared with PSO and FA using multiple test optimization functions, such as the Ackley, Hartmann, Michalewicz, Shubert, Easom, Bohachevsky, and Rastrigin functions. Also, a multiobjective real issue in power system is tested using the proposed methods where the objectives were cumulative voltage deviation and power losses of three weight sets during the selection allocation of distribution generators. The results show that the proposed method provides good data and greater convergence to the optimal point compared with the classical methods for most of the functions tested.
<span lang="EN-US">Proper employment of Hybrid Wind/ PV system is often implemented near the load, and it is linked with the grid to study dynamic stability analysis. Generally, instability is because of sudden load demand variant and variant in renewable sources generation. As well as, weather variation creates several factors that affect the operation of the integrated hybrid system. So this paper introduces output result of a PV /wind via power electronic technique; DC chopper; that is linked to Iraqi power system to promote the facilitating achievement of Wind/ PV voltage. Moreover, PSS/E is used to study dynamic power stability for hybrid system which is attached to an effective region of Iraqi Network. The hybrid system is connected to Amara Old bus and fault bus is achieved to that bus and the stability results reflects that settling time after disturbance is not satisfactory. But, it is found that PV/wind generation system influences Iraqi grid stability to be better than that with only PV generation and the latter is better than stability of the grid that is enhanced with only wind generation. These results represent an important guideline for Iraqi power system planner.</span>
A new index reliability for power system protection by optimizing the relay time operating using multi agent system (MAS) is presented. In the proposed method, the MAS consists of two agents as follows; first agent is a fault current agent, i.e., to determine the fault current at all points before and after grounding. While, the second agent is the time operating, i.e., to determine the time operating relay before and after modifying the fault current. The simulation implementation is carried out in Iraqi national grid system (132 kV) -Najaf city. The results show that the failure rate is decreased to 50% approximation for over current and earth fault relays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.