Satisfying the world’s rapidly increasing demands in energy via the optimized management of available resources is becoming one of the most important research trends worldwide. When it comes to energy, it is very important to talk about decentralization, security, traceability and transparency. Thus, over the last few years, numerous research works have presented blockchain technology as the best novel business platform enabling a secure, transparent and tamper-proof energy management solution. In this paper, we conducted a systematic literature review (SLR) using the PRISMA framework of the different existing research studies related to the use of the blockchain technology in the energy sector, published between 2008 and 2021. We identified a total of 769 primary studies after intensive manual analysis and filtering, which we thoroughly assessed using various criteria to address six main research questions that covered the blockchain types, applications and platforms in the energy sector, the energy source types for which blockchain platforms are implemented, the emergent technologies that are combined to blockchain solutions, and the types of consensuses used in energy blockchains. Based on the collected survey data, we built a database to categorize the existing research works, identify research trends, and highlight knowledge gaps and potential areas for additional field study.
Renewable energies are clean alternatives to the highly polluting fossil fuels that are still used in the power generation sector. The goal of this research was to look into replacing a Heavy Fuel Oil (HFO) thermal power plant in Limbe, southwest Cameroon, with a hybrid photovoltaic (PV) and wind power plant combined with a storage system. Lithium batteries and hydrogen associated with fuel cells make up this storage system. The total cost (TC) of the project over its lifetime was minimized in order to achieve the optimal sizing of the hybrid power plant components. To ensure the reliability of the new hybrid power plant, a criterion measuring the loss of power supply probability (LPSP) was implemented as a constraint. Moth Flame Optimization (MFO), Improved Grey Wolf Optimizer (I-GWO), Multi-Verse Optimizer (MVO), and African Vulture Optimization Algorithm (AVOA) were used to solve this single-objective optimization problem. The optimization techniques entailed the development of mathematical models of the components, with hourly weather data for the selected site and the output of the replaced thermal power plant serving as input data. All four algorithms produced acceptable and reasonably comparable results. However, in terms of proportion, the total cost obtained with the MFO algorithm was 0.32%, 0.40%, and 0.63% lower than the total costs obtained with the I-GWO, MVO, and AVOA algorithms, respectively. Finally, the effect of the type of storage coupled to the PV and wind systems on the overall project cost was assessed. The MFO meta-heuristic was used to compare the results for the PV–Wind–Hydrogen–Lithium Battery, PV–Wind–Hydrogen, and PV–Wind–Lithium Battery scenarios. The scenario of the PV–Wind–Hydrogen–Lithium Battery had the lowest total cost. This scenario’s total cost was 2.40% and 18% lower than the PV–Wind–Hydrogen and PV–Wind–Lithium Battery scenarios.
Unmanned Combat Aerial Vehicle (UCAV) path planning is a challenging optimization problem that seeks the optimal or near-optimal flight path for military operations. The problem is further complicated by the need to operate in a complex battlefield environment with minimal military risk and fewer constraints. To address these challenges, highly sophisticated control methods are required, and Swarm Intelligence (SI) algorithms have proven to be one of the most effective approaches. In this context, a study has been conducted to improve the existing Spider Monkey Optimization (SMO) algorithm by integrating a new explorative local search algorithm called Beta-Hill Climbing Optimizer (BHC) into the three main phases of SMO. The result is a novel SMO variant called SMOBHC, which offers improved performance in terms of intensification, exploration, avoiding local minima, and convergence speed. Specifically, BHC is integrated into the main SMO algorithmic structure for three purposes: to improve the new Spider Monkey solution generated in the SMO Local Leader Phase (LLP), to enhance the new Spider Monkey solution produced in the SMO Global Leader Phase (GLP), and to update the positions of all Local Leader members of each local group under a specific condition in the SMO Local Leader Decision (LLD) phase. To demonstrate the effectiveness of the proposed algorithm, SMOBHC is applied to UCAV path planning in 2D space on three different complex battlefields with ten, thirty, and twenty randomly distributed threats under various conditions. Experimental results show that SMOBHC outperforms the original SMO algorithm and a large set of twenty-six powerful and recent evolutionary algorithms. The proposed method shows better results in terms of the best, worst, mean, and standard deviation outcomes obtained from twenty independent runs on small-scale (D = 30), medium-scale (D = 60), and large-scale (D = 90) battlefields. Statistically, SMOBHC performs better on the three battlefields, except in the case of SMO, where there is no significant difference between them. Overall, the proposed SMO variant significantly improves the obstacle avoidance capability of the SMO algorithm and enhances the stability of the final results. The study provides an effective approach to UCAV path planning that can be useful in military operations with complex battlefield environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.