BackgroundEvidence suggests that interleukin (IL)-1β is important in the pathogenesis of atherosclerosis and its complications and that inhibiting IL-1β may favorably affect vascular disease progression.ObjectivesThe goal of this study was to evaluate the effects of IL-1β inhibition with canakinumab versus placebo on arterial structure and function, determined by magnetic resonance imaging.MethodsPatients (N = 189) with atherosclerotic disease and either type 2 diabetes mellitus or impaired glucose tolerance were randomized to receive placebo (n = 94) or canakinumab 150 mg monthly (n = 95) for 12 months. They underwent magnetic resonance imaging of the carotid arteries and aorta.ResultsThere were no statistically significant differences between canakinumab compared with placebo in the primary efficacy and safety endpoints. There was no statistically significant change in mean carotid wall area and no effect on aortic distensibility, measured at 3 separate anatomic sites. The change in mean carotid artery wall area was –3.37 mm2 after 12 months with canakinumab versus placebo. High-sensitivity C-reactive protein was significantly reduced by canakinumab compared with placebo at 3 months (geometric mean ratio [GMR]: 0.568; 95% confidence interval [CI]: 0.436 to 0.740; p < 0.0001) and 12 months (GMR: 0.56; 95% CI: 0.414 to 0.758; p = 0.0002). Lipoprotein(a) levels were reduced by canakinumab compared with placebo (–4.30 mg/dl [range: –8.5 to –0.55 mg/dl]; p = 0.025] at 12 months), but triglyceride levels increased (GMR: 1.20; 95% CI: 1.046 to 1.380; p = 0.01). In these patients with type 2 diabetes mellitus or impaired glucose tolerance, canakinumab had no effect compared with placebo on any of the measures assessed by using a standard oral glucose tolerance test.ConclusionsThere were no statistically significant effects of canakinumab on measures of vascular structure or function. Canakinumab reduced markers of inflammation (high-sensitivity C-reactive protein and interleukin-6), and there were modest increases in levels of total cholesterol and triglycerides. (Safety & Effectiveness on Vascular Structure and Function of ACZ885 in Atherosclerosis and Either T2DM or IGT Patients; NCT00995930)
Atherosclerosis is a prevalent cardiovascular disease marked by inflammation and the formation of plaque within arterial walls. As the disease progresses, there is an increased risk of major cardiovascular events. Owing to the nature of atherosclerosis, it is imperative to develop methods to further understand the physiological implications and progression of the disease. The combination of positron emission tomography (PET)/computed tomography (CT) has proven to be promising for the evaluation of atherosclerotic plaques and inflammation within the vessel walls. The utilization of the radiopharmaceutical tracer, 18F-fluorodeoxyglucose (18F-FDG), with PET/CT is invaluable in understanding the pathophysiological state involved in atherosclerosis. In this review, we will discuss the use of 18F-FDG-PET/CT imaging for the evaluation of atherosclerosis and inflammation both in preclinical and clinical studies. The potential of more specific novel tracers will be discussed. Finally, we will touch on the potential benefits of using the newly introduced combined PET/magnetic resonance imaging (MRI) for non-invasive imaging of atherosclerosis.
AIM:To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS:The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t -test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS:No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. Core tip: The traditional approach to atherosclerotic plaque imaging using magnetic resonance (MR) is the two-dimensional (2D) multi-contrast turbo spin echo technique. However, 3D black blood MR imaging is becoming the preferred methodology for evaluating plaque burden non-invasively. Comparing imaging results obtained using both 3D sampling Perfection with application-optimized contrast using different flip angle evolution (SPACE) and conventional 2D multi-contrast TSE sequences in evaluating vascular territories showed good agreement in both qualitative and quantitative measurements between the two techniques. 3D SPACE technique is a promising and potentially feasible approach for the evaluation of multiple vascular beds in patients at risk for cardiovascular disease. CONCLUSION:Wong SK, Mobolaji-Iawal M, Arama L, Cambe J, Biso S, Alie N, Fayad ZA, Mani V. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.