In this paper, the influence of a nickel binder metal and molybdenum carbide as an additional alloying element on the microstructure and corrosion behavior of WC-based cemented carbides, processed by conventional powder metallurgy, was studied, and a comparison with conventional cemented carbide (WC-Co) was carried out. The sintered alloys were characterized, before and after corrosive tests, by analyses using optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The corrosion resistance of the cemented carbides was investigated by open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy in a 3.5 wt.% NaCl solution. The WC-NiMo cemented carbides showed microstructures similar to those of WC-Co; however, pores and binder islands were observed in the microstructures. The corrosion tests showed promising results, the WC-NiMo cemented carbide showed superior corrosion resistance and higher passivation capacity than the WC-Co cemented carbide. The WC-NiMo alloy showed a higher EOC ≈−0.18 V vs. Ag|AgCl|KCl3mol/L than the WC-Co (EOC≈−0.45 V vs. Ag|AgCl|KCl3mol/L). The potentiodynamic polarization curves showed lower current density values throughout the potential range for the WC-NiMo alloy, and it was observed that Ecorr was less negative (≈−0.416 V vs. Ag|AgCl|KCl3mol/L) than for WC-Co (≈−0.543 V vs. V vs. Ag|AgCl|KCl3mol/L). The EIS analysis confirmed low rate corrosion of WC-NiMo associated with the formation of a passive thin layer. This alloy showed a higher Rct (1970.70 Ω).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.