In the last decade, biology and medicine have undergone a fundamental change: next generation sequencing (NGS) technologies have enabled to obtain genomic sequences very quickly and at small costs compared to the traditional Sanger method. These NGS technologies have thus permitted to collect genomic sequences (genes, exomes or even full genomes) of individuals of the same species. These latter sequences are identical to more than 99%. There is thus a strong need for efficient algorithms for indexing and performing fast pattern matching in such specific sets of sequences. In this paper we propose a very efficient algorithm that solves the exact pattern matching problem in a set of highly similar DNA sequences where only the pattern can be pre-processed. This new algorithm extends variants of the Boyer-Moore exact string matching algorithm. Experimental results show that it exhibits the best performances in practice.
We consider the problem of on-line exact string matching of a pattern in a set of highly similar sequences. This can be useful in cases where indexing the sequences is not feasible. We present a preliminary study by restricting the problem for a specific case where we adapt the classical Morris-Pratt algorithm to consider borders with errors. We give an original algorithm for computing borders at Hamming distance 1. We exhibit experimental results showing that our algorithm is much faster than searching for the pattern in each sequences with a very fast on-line exact string matching algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.