The spontaneous mouse grey-lethal (gl) mutation is responsible for a coat color defect and for the development of the most severe autosomal recessive form of osteopetrosis. Using a positional cloning approach, we have mapped and isolated the gl locus from a approximately 1.5 cM genetic interval. The gl locus was identified in a bacterial artificial chromosome (BAC) contig by functional genetic complementation in transgenic mice. Genomic sequence analysis revealed that the gl mutation is a deletion resulting in complete loss of function. The unique approximately 3 kb wild-type transcript is expressed primarily in osteoclasts and melanocytes as well as in brain, kidney, thymus and spleen. The gl gene is predicted to encode a 338-amino acid type I transmembrane protein that localizes to the intracellular compartment. Mutation in the human GL gene leads to severe recessive osteopetrosis. Our studies show that mouse Gl protein function is absolutely required for osteoclast and melanocyte maturation and function.
Transfer RNAs of the extreme halophile Haloferax volcanii contain several modified nucleosides, among them 1-methylpseudouridine (m1 psi), pseudouridine (psi), 2'-0-methylcytosine (Cm) and 1-methylinosine (m1l), present in positions 54, 55, 56 and 57 of the psi-loop, respectively. At the same positions in tRNAs from eubacteria and eukaryotes, ribothymidine (T-54), pseudouridine (psi-55), non-modified cytosine (C-56) and non-modified adenosine or guanosine (A-57 or G-57) are found in the so-called T psi-loop. Using as substrate a T7 transcript of Haloferax volcanii tRNA(Ile) devoid of modified nucleosides, the enzymatic activities of several tRNA modification enzymes, including those for m1 psi-54, psi-55, Cm-56 and m1l-57, were detected in cell extracts of H.volcanii. Here, we demonstrate that modification of A-57 into m1l-57 in H.volcanii tRNA(Ile) occurs via a two-step enzymatic process. The first step corresponds to the formation of m1A-57 catalyzed by a S-adenosylmethionine-dependent tRNA methyltransferase, followed by the deamination of the 6-amino group of the adenine moiety by a 1-methyladenosine-57 deaminase. This enzymatic pathway differs from that leading to the formation of m1l-37 in the anticodon loop of eukaryotic tRNA(Ala). In the latter case, inosine-37 formation preceeds the S-adenosylmethionine-dependent methylation of l-37 into m1l-37. Thus, enzymatic strategies for catalyzing the formation of 1-methylinosine in tRNAs differ in organisms from distinct evolutionary kingdoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.