In this paper we review some recent applications of the mimetic finite difference method to nonlinear problems (variational inequalities and quasilinear elliptic equations) and optimal control problems governed by linear elliptic partial differential equations. Several numerical examples show the effectiveness of mimetic finite differences in building accurate numerical approximations. Finally, driven by a real-world industrial application (the numerical simulation of the extrusion process) we explore possible further applications of the mimetic finite difference method to nonlinear Stokes equations and shape optimization/free-boundary problems
We investigate the performance of the Mimetic Finite Difference (MFD) method for the approximation of a constraint optimal control problem governed by an elliptic operator. Low-order and high-order mimetic discretizations are considered and a priori error estimates are derived, in a suitable discrete norm, for both the control and the state variables. A wide class of numerical experiments performed on a set of examples selected from the literature assesses the robustness of the MFD method and confirms the convergence analysis
In this work we approximate the solution of a quasilinear elliptic problem of monotone type by using the Mimetic Finite Difference (MFD) method. Under a suitable approximation assumption, we prove that the MFD approximate solution converges, with optimal rate, to the exact solution in a mesh-dependent energy norm. The resulting nonlinear discrete problem is then solved iteratively via linearization by applying the Kačanov method. The convergence of the Kačanov algorithm in the discrete mimetic framework is also proved. Several numerical experiments confirm the theoretical analysis
This series contains monographs of lecture notes type, lecture course material, and high-quality proceedings on topics described by the term "computational science and engineering". This includes theoretical aspects of scientific computing such as mathematical modeling, optimization methods, discretization techniques, multiscale approaches, fast solution algorithms, parallelization, and visualization methods as well as the application of these approaches throughout the disciplines of biology, chemistry, physics, engineering, earth sciences, and economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.