We compared the diacylglycerol kinase (DGK) catalyzed phosphorylation of 1-O-hexanoyl-2-oleoylglycerol (HOG) with 1-O-hexanoyl-2-arachidonoylglycerol (HAG). We assayed the activity of DGKalpha and DGKzeta using a liposomal-based assay system. Liposomal assays show that the DGKalpha and, to a lesser extent, DGKzeta preferentially act on substrates containing an arachidonoyl group when this group is incorporated into alkylacylglycerols. The activity of DGKalpha was 82 times greater with HAG compared to HOG. DGKzeta is 10 times more active in catalyzing the phosphorylation of HAG compared to HOG. Although diacylglycerols were better substrates for both DGKalpha and DGKzeta than the alkylacylglycerols, no specificity was exhibited for arachidonoyl-containing diacylglycerols. However, this specificity for HAG over HOG is modulated by the phospholipid composition of the liposome. Addition of cholesterol and/or phosphatidylethanolamine partially reduces the substrate selectivity. We also analyzed the kinetic constants for the phosphorylation of both diacylglycerol and 1-alkyl-2-acylglycerol catalyzed by the alpha, epsilon, or zeta isoforms using a soluble Triton mixed micelle system. We found that all three isoforms of DGK can phosphorylate 1-alkyl-2-acylglycerols but generally at a lower rate than for the corresponding diacylglycerol. The specificity of DGKepsilon for diacylglycerols containing an arachidonoyl group was retained when the ester group in the C-1 position is replaced with an ether linkage. In contrast, DGKalpha and, to a lesser extent, DGKzeta had greater specificity for arachidonoyl-containing 1-alkyl-2-acylglycerols than for arachidonoyl-containing diacylglycerols. This demonstrates that the acyl chain specificity is affected by the structure of the lipid headgroup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.