SUMMARYPurpose: Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities.
Since the original description by Taylor, the term focal cortical dysplasia has been used to refer to a wide range of alterations of the cortical mantle. More recently, these conditions have been described from neuroimaging, neuropathological and genetic standpoints, generating several classifications. It is widely recognized that these classifications are unsatisfactory. We propose a simplified classification of focal cortical dysplasias based on easily recognized neuropathological characteristics. We retrospectively re-examined histological sections of cortex from 52 of 224 (23%) patients operated on for drug-resistant partial epilepsy in which cortical dysplasia was present but not associated with other brain pathologies except hippocampal sclerosis. Three subgroups were identified: (i) architectural dysplasia (31 patients) characterized by abnormal cortical lamination and ectopic neurones in white matter; (ii) cytoarchitectural dysplasia (six patients) characterized by giant neurofilament-enriched neurones in addition to altered cortical lamination; and (iii) Taylor-type cortical dysplasia (15 patients) with giant dysmorphic neurones and balloon cells (all but two patients) associated with cortical laminar disruption. The patients with architectural dysplasia had lower seizure frequency than those with cytoarchitectural and Taylor-type dysplasia, and the epileptogenic zone was mainly in the temporal lobe. In patients with Taylor-type dysplasia, the epileptogenic zone was mainly extratemporal, and interictal stereo-EEG was distinctive. MRI was unrevealing in 34% of patients, but distinctive signal alterations characterized most patients with Taylor-type dysplasia, while focal hypoplasia with MRI abnormalities was found in architectural dysplasia. Patients with Taylor-type dysplasia had the best outcome, with 75% seizure-free (Engel class Ia) after at least a year of follow-up compared with 50% of cytoarchitectural dysplasia and 43% of architectural dysplasia patients seizure-free. This three-category classification is based on easily recognized histopathological characteristics and avoids complicated terminology, while the distinctive ensemble of other characteristics defines clinically homogeneous groups.
We present the results of a retrospective study on 10 patients operated on for intractable epilepsy associated with nodular heterotopia as identified by high resolution MRI. Seven patients had unilateral heterotopia, one patient had symmetric bilateral heterotopia and two patients had asymmetric bilateral heterotopia. By stereo-electroencephalogram (SEEG) (nine patients) interictal activity within nodules was similar in all cases, and ictal activity never started from nodules alone but from the overlying cortex or simultaneously in nodules and cortex. Excellent outcomes (Engel class Ia, 1987) were achieved in the seven patients with unilateral heterotopia, showing that surgery can be highly beneficial in such cases when the epileptogenic zone is carefully located prior to surgery by MRI and particularly SEEG. For the bilateral cases surgical outcomes were Engel IIa (one patient) or Engel IIIa (two patients). Histological/immunohistochemical studies of resected specimens showed that all nodules had similar microscopic organization, even though their extent and location varied markedly. The overlying cortex was dysplastic in nine patients, but of normal thickness. We suggest that nodule formation may be the result of a dual mechanism: (i) failure of a stop signal in the germinal periventricular region leading to cell overproduction; and (ii) early transformation of radial glial cells into astrocytes resulting in defective neuronal migration. The intrinsic interictal epileptiform activity of nodules may be due to an impaired intranodular GABAergic system.
Of the cases with nocturnal frontal lobe epilepsy (NFLE) approximately 30% are refractory to antiepileptic medication, with several patients suffering from the effects of both ongoing seizures and disrupted sleep. From a consecutive series of 522 patients operated on for drug-resistant focal epilepsy, 21 cases (4%), whose frontal lobe seizures occurred almost exclusively (>90%) during sleep, were selected. All patients underwent a comprehensive pre-surgical evaluation, which included history, interictal EEG, scalp video-EEG monitoring, high-resolution MRI and, when indicated, invasive recording by stereo-EEG (SEEG). There were 11 males and 10 females, whose mean age at seizure onset was 6.2 years, mean age at surgery was 24.7 years and seizure frequency ranged from <20/month to >300/month. Nine patients reported excessive daytime sleepiness (EDS). Prevalent ictal clinical signs were represented by asymmetric posturing (6 cases), hyperkinetic automatisms (10 cases), combined tonic posturing and hyperkinetic automatisms (4 cases) and mimetic automatisms (1 case). All patients reported some kind of subjective manifestations. Interictal and ictal EEG provided lateralizing or localizing information in most patients. MRI was unrevealing in 10 cases and it showed a focal anatomical abnormality in one frontal lobe in 11 cases. Eighteen patients underwent a SEEG evaluation to better define the epileptogenic zone (EZ). All patients received a microsurgical resection in one frontal lobe, tailored according to pre-surgical evaluations. Two patients were operated on twice owing to poor results after the first resection. Histology demonstrated a Taylor-type focal cortical dysplasia (FCD) in 16 patients and an architectural FCD in 4. In one case no histological change was found. After a post-operative follow-up of at least 12 months (mean 42.5 months) all the 16 patients with a Taylor's FCD were in Engel's Class Ia and the other 5 patients were in Engel's Classes II or III. After 6 months post-surgery EDS had disappeared in the 9 patients who presented this complaint pre-operatively. It is concluded that patients with drug-resistant, disabling sleep-related seizures of frontal lobe origin should be considered for resective surgery, which may provide excellent results both on seizures and on epilepsy-related sleep disturbances. An accurate pre-surgical evaluation, which often requires invasive EEG recording, is mandatory to define the EZ. Further investigation is needed to explain the possible causal relationships between FCD, particularly Taylor-type, and sleep-related seizures, as observed in this cohort of NFLE patients.
Malformations of cortical development (MCD) include a broad range of disorders that result from disruption of the major steps of cortical development: cell proliferation in germinal zones, neuronal migration and cortical organization. With the improvement and increased utilization of modern imaging techniques, MCD have been increasingly recognized as a major cause of seizure disorders. The advent of Magnetic Resonance Imaging (MRI), in particular, has revolutionized the investigation and the treatment of patients with epilepsy. High-resolution MRI may elucidate the type, the extension and the localization of MCD; therefore, in a group of patients suffering from drugresistant partial epilepsy (DRPE), MRI greatly contributes to the identification of subjects who are suitable for surgical treatment. In the recent past, many efforts were addressed to establish the MRI diagnostic criteria for a peculiar group of MCD, namely focal cortical dysplasias (FCD), histopathologically distinguished as types I and II. Some subtle FCD, which were previously cryptic to imaging investigation, can now be recognized by MRI, however their detection and specification remains challenging. This review will re-visit the neuroimaging findings, including structural MRI, PET, co-registered PET/MRI, MEG and diffusion tensor imaging (DTI) of FCD types I and II. Three major issues will be discussed: 1) the morphological MRI features of the FCDs, 2) the utility of PET and MEG and the use of co-registration methods and 3) diffusion tensor imaging (DTI) as a future modality of investigation, which may add additional informations regarding the microstructure of the grey matter (GM) and white matter (WM) in cortical dysplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.