In this paper, a numerical simulation was conducted to investigate the steady laminar natural convective heat transfer and surface radiation from a heated rectangular body in a triangular enclosure. The coupled equations of Navier-stockes and energy are both solved using the finite volume method. The velocity-pressure coupling is insured by the SIMPLER algorithm. The fluid used in this study is a dry air of Prandtl numberPr= 0.71.In such way that, the radiative exchanges are made only through solid walls and which are assumed to be gray and diffuse. The physical parameters characterizing the problem and influencing heat transfer are Rayleigh numberRa, aspect ratioA, heighthand widthwof the body. The results are presented in terms of isotherms, streamlines and average Nusselt number.
In the building, roof is a major element contributing to the space thermal load. Due to its importance, this component has been widely studies in the literature and under various climatic conditions. In this paper, a numerical study was carried out for the coupling of natural convection and surface radiation heat transfer in a triangular shaped roof with eave (Gabel roof) for cold climates. The numerical solution is obtained using a finite volume method based on the SIMPLER algorithm for the treatment of velocity-pressure coupling. Concerning the radiation exchange, the working fluid (air) is assumed to be transparent, so only the solid surfaces (assumed diffuse-grey) give a contribute to such exchange. Governing parameters on heat transfer and flow fields are Rayleigh number (Ra), aspect ratio (A) and eave lengths (e*). Numerical results are obtained to display the isotherms, streamlines and the heat transfer rate in terms of local and average Nusselt numbers. We found that the production of several circular cells is proportional to the decrease of aspect ratio and the increase of Rayleigh number. In addition, the heat transfer is much more pronounced in the presence of thermal radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.