We consider impurity atoms embedded in a two-component Bose-Einstein condensate in a quasi-one dimensional regime. We study the effects of repulsive coupling between the impurities and Bose species on the equilibrium of the system for both miscible and immiscible mixtures by numerically solving the underlying coupled Gross-Pitaevskii equations. Our results reveal that the presence of impurities may lead to a miscible-immiscible phase transition due to the interaction of the impurities and the two condensates. Within the realm of the Bogoliubov-de Gennes equations we calculate the quantum fluctuations due to the different types of interactions. The breathing modes and the time evolution of harmonically trapped impurities in both homogeneous and inhomogeneous binary condensates are deeply discussed in the miscible case using variational and numerical means. We show in particular that the self-trapping, the miscibility and the inhomogeneity of the trapped Bose mixture may strongly modify the low-lying excitations and the dynamical properties of impurities. The presence of phonons in the homogeneous Bose mixture gives rise to the damping of breathing oscillations of impurities width.
Using the time-dependent Hartree-Fock-Bogoliubov approach, where the condensate is coupled with the thermal cloud and the anomalous density, we study the equilibrium and the dynamical properties of three-dimensional quantumdegenerate Bose gas at finite temperature. Effects of the anomalous correlations on the condensed fraction and the critical temperature are discussed. In uniform Bose gas, useful expressions for the Bogoliubov excitations spectrum, the first and second sound, the condensate depletion and the superfluid fraction are derived. Our results are tested by comparing the findings computed by quantum Monte Carlo simulations. We present also a systematic investigation of the collective modes of a Bose condensate confined in an external trap. Our predictions are in qualitative agreement with previous experimental and theoretical results. We show in particular that our theory is capable of explaining the so-called anomalous behavior of the m = 0 mode.
We investigate the effects of higher-order quantum fluctuations on the bulk properties of self-bound droplets in three-, two- and one-dimensional binary Bose mixtures using the Hartree–Fock–Bogoliubov theory. We calculate higher-order corrections to the equation of state of the droplet at both zero and finite temperatures. We show that our results for the ground-state energy are in a good agreement with recent quantum Monte Carlo simulations in any dimension. Our study extends to the finite temperature case where it is found that thermal fluctuations may destabilize the droplet state and eventually destroy it. In two dimensions, we reveal that the droplet occurs at temperatures well below the Berezinskii–Kosterlitz–Thouless transition temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.