Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.
ABSTRACT:The formation and swelling behavior of bacterial cellulose/acrylic acid hydrogel prepared from aqueous mixture consists of 20 : 80 (v/v) acrylic acid (AAc) and 1% bacterial cellulose dispersion under accelerated electron beam was investigated. Gel fraction of hydrogel increased with the increasing dose suggesting a denser composite at 50 kGy compared to 35 kGy. SEM photomicrographs revealed a homogenous pores distribution at higher dose with pore sizes ranging from 1 to 5 lm. Hydrogel synthesized at lower dose of electron beam exhibited higher swelling ability and the degree of swelling increased as the pH of surrounding medium increased and it reached the optimum swelling at pH 7. While swelling of the hydrogel decreased with the increasing ionic strength of solution, swelling at different temperatures ranging from 25 to 50 C revealed a unique character where the hydrogel shrunk at 37 C. Moreover, hydrogel synthesized at higher dose exhibited a higher degree of swelling in methanol with respect to water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.