Polystyrene surfaces may be patterned by Ag(II), NO(3)(•), and OH(•) electrogenerated at the tip of a scanning electrochemical microscope. These electrogenerated reagents lead to local surface oxidation of the polymer. The most efficient surface treatment is obtained with Ag(II). The patterns are evidenced by XPS and IR and also by the surface wettability contrast between the hydrophobic virgin surface and the hydrophilic pattern. Such Ag(II) treatment of a polystyrene Petri dish generates discriminative surfaces able to promote or disfavor the adhesion of proteins and also the adhesion and growth of adherent cells. The process is also successfully applied to a cyclo-olefin copolymer and should be suitable to pattern any hydrogenated polymer.
A shear horizontal surface acoustic wave sensor (SH-SAW) operating at 104 MHz was functionalized with a polypyrrole (PPy) molecularly imprinted polymer (MIP) for selective detection of flumequine (FLU) in aqueous media.
This study reports a new chemical sensor based on ion-imprinted polymer matrix using copper nanoparticles-polyaniline nanocomposite (IIP-Cu-NPs/PANI). This sensor was prepared by electropolymerization using aniline as a functional monomer and nitrate as template onto the copper nanoparticles-modified glassy carbon (GC) electrode surface. Both ion-imprinted (IIP) and nonimprinted (NIP) electrochemical sensor surfaces were evaluated using UV-Visible spectrometry and scanning electron microscopy (SEM). The electrochemical analysis was made via cyclic voltammetry (CV), linear sweep voltammetry (LSV), and impedance spectroscopy (IS). Throughout this study various analytical parameters, such as scan rate, pH value, concentration of monomer and template, and electropolymerization cycles, were optimized. Under the optimum conditions, the peaks current of nitrate was linear to its concentration in the range of 1μM-0.1M with a detection limit of 31μM and 5μM by EIS and LSV. The developed imprinted nitrate sensor was successfully applied for nitrate determination in different real water samples with acceptable recovery rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.