Current velocities and vertical sediment fluxes in the Var submarine canyon were assessed at three stations respectively at 800 m, 1200 m and 1800 m depth, using moorings deployed for 4 months during winter 2008-2009. During this period, we observed three major sediment gravity flows, all characterized by sudden increases in current velocity that lasted 2-5 h and by downward particle fluxes. Each gravity flow, described using a high frequency current meter and two Acoustic Doppler Current Profiler (75 and 300 kHz ADCP) showed distinctive features. The first event, triggered during a flood of the Var River, was determined to be a hyperpycnal current with a large vertical extent (>100 m high) and relatively low velocity (40 cm s −1). The second event, observed after a Var River flood, was more energetic with a maximum horizontal current peak of 60 cm s −1 but with a low vertical extent (30 m high). This event was considered to be a turbidity landslide. The third was the result of a local canyon wall failure. It was characterized by a speed of >85 cm s −1. These peaks of current speed were associated with large clouds of material that transported sediment along the canyon and reached up to 200 g m −2 d −1 of sediment (>1 g m −2 d −1 of organic carbon). Our measurements in the Var canyon show the important role of gravity flows transporting particulate matter to the deep-sea floor. These large inputs of sediment and organic carbon may have a significant impact on deep-sea carbon storage in the Mediterranean Sea. Highlights ► The floods of the Var River explain the trigger of the hyperpycnal currents in the Var submarine canyon. ► Three gravity flows were observed in the Var canyon characterized by increase in current and particles. ► Gravity flows transported lot of material along the entire canyon. ► The large input of sediment has a significant impact on the bottom of the deep Mediterranean Sea.
The NEutrinoMediterranean Observatory-Submarine Network 1 (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to marine ecosystems, climate change, and geohazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian funding and to the European Commission (EC) project European Seas Observatory NETwork-Network of Excellence (ESONET-NoE, 2007-2011) that funded the Listening to the Deep Ocean-Demonstration Mission (LIDO-DM) and a technological interoperability test (http://www.esonet-emso.org). NEMO-SN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydroacoustic, and bioacoustic measurements. Scientific objectives include studying seismic signals, tsunami generation and warnings, its hydroacoustic precursors, and ambient noise characterization in terms of marine mammal sounds, environmental and anthropogenic sources. NEMO-SN1 is also an important test site for the construction of the Kilometre-Cube Underwater Neutrino Telescope (KM3NeT), another large-scale research infrastructure included in the ESFRI Roadmap based on a large volume neutrino telescope. The description of the observatory and its most recent implementations is presented. On June 9, 2012, NEMO-SN1 was successfully deployed and is working in real time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.