The applicability of deep eutectic solvents is determined by their physicochemical properties. In turn, the properties of eutectic mixtures are the result of the components’ molar ratio and chemical composition. Owing to the relatively low viscosities displayed by alcohol-based deep eutectic solvents (DESs), their application in industry is more appealing. Modeling the composition–property relationships established in polyalcohol-based mixtures is crucial for both understanding and predicting their behavior. In this work, a physicochemical property–structure comparison study is made between four choline chloride polyalcohol-based DESs, namely, ethaline, propeline, propaneline, and glyceline. Physicochemical properties obtained from molecular dynamic simulations are compared to experimental data, whenever possible. The simulations cover the temperature range from 298.15 to 348.15 K. The simulated and literature experimental data are generally in good agreement for all the studied DESs. Structural properties, such as radial and spatial distribution functions, coordination numbers, hydrogen bond donor (HBD)–HBD aggregate formation, and hydrogen bonding are analyzed in detail. The higher prevalence of HBD:HBD and HBD:anion hydrogen bonds is likely to be the major reason for the relatively high density and viscosity of glyceline as well as for lower DES self-diffusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.