Background: The autoimmune disease type 1 diabetes mellitus (T1D) is associated with a defect in the immune response, which increases susceptibility to infection. We recently demonstrated that prolonged elevated levels of type 1 interferon (IFN) induce lymphocyte exhaustion during T1D. Aims: In the present study, we further investigated the effect of blocking the type I IFN receptor signaling pathway on diabetic dyslipidemia, in which an abnormal lipid profile leads to the exhaustion of B cells and alteration of their distribution and functions. Methods: T1D was induced in a mouse model by an intraperitoneal injection of a single dose (60 mg/kg) of streptozotocin (STZ). Three groups of mice were examined: a non-diabetic control group, a diabetic group and a diabetic group treated with an anti-IFN (alpha, beta and omega) receptor 1 (IFNAR1) blocking antibody to block type I IFN signaling. Results: We observed that induction of T1D was accompanied by a marked destruction of β cells and a reduction in the insulin levels in the diabetic group. Diabetic mice exhibited many changes, including alterations in their lipid profiles, expansion of splenic B cells, increased caspase-3, -8 and -9 activity, and apoptosis in peripheral B cells. Blocking type 1 IFN signaling in diabetic mice significantly returned the insulin and lipid profiles to normal levels, subsequently restored the B cell distribution, and rescued the peripheral B cells from apoptosis. Conclusion: Our data suggest the potential role of type I IFN in mediating diabetic dyslipidemia and an exhausted state of B cells during T1D.
Rheumatoid arthritis (RA) is a chronic inflammatory condition, an autoimmune disease that affects the joints, and a multifactorial disease that results from interactions between environmental, genetic, and personal and lifestyle factors. This study was designed to assess the effects of curcumin, bone marrow-derived mesenchymal stem cells (BM-MSCs), and their coadministration on complete Freund’s adjuvant- (CFA-) induced arthritis in male and female albino rats. Parameters including swelling of the joint, blood indices of pro-/antioxidant status, cytokines and histopathological examination of joints, and testis and ovary were investigated. RA was induced by a single dose of subcutaneous injection of 0.1 mL CFA into a footpad of the right hind leg of rats. Arthritic rats were treated with curcumin (100 mg/kg b.wt./day) by oral gavage for 21 days and/or treated with three weekly intravenous injections of BM-MSCs (
1
×
10
6
cells/rat/week) in phosphate-buffered saline (PBS). The treatment with curcumin and BM-MSCs singly or together significantly (
P
<
0.05
) improved the bioindicators of oxidative stress and nonenzymatic and enzymatic antioxidants in sera of female rats more than in those of males. Curcumin and BM-MSCs significantly (
P
<
0.05
) improved the elevated TNF-α level and the lowered IL-10 level in the arthritic rats. Furthermore, joint, testis, and ovary histological changes were remarkably amended as a result of treatment with curcumin and BM-MSCs. Thus, it can be concluded that both curcumin and BM-MSCs could have antiarthritic efficacies as well as protective effects to the testes and ovaries which may be mediated via their anti-inflammatory and immunomodulatory potentials as well as oxidative stress modulatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.