Mesenchymal stem cells (MSCs) are being used to treat many diseases as they exhibit great regenerative potential. However, MSC's transplantation sometimes does not yield the maximum regenerative outcome as they are unable to survive in inflammatory conditions. Several approaches including preconditioning are used to improve the survival rate of mesenchymal stem cells. One such recently reported approach is preconditioning MSCs with plant extracts. The present study was designed to evaluate the effect of Daphne mucronata extract on stressed human adipose-derived mesenchymal stem cells (hADMSCs). Isolated hADMSCs were preconditioned with different concentrations of Daphne muconata extract and the protective, proliferative, antioxidant and anti-inflammatory effect was assessed through various assays and expression analysis of inflammatory markers regulated through NF-κB pathway. Results suggest that preconditioning hADMSCs with Daphne mucronata increased the cell viability, proliferative and protective potential of hADMSCs with a concomitant reduction in LDH, ROS and elevation in SOD activity. Moreover, both the ELISA and gene expression analysis demonstrated down regulations of inflammatory markers (IL1-β, TNF-α, p65, p50, MMP13) in Daphne mucronata preconditioned hADMSCs as compared to stress. This is the first study to report the use of MIA induced oxidative stress against hADMSC's and effect of Daphne mucronata on stressed hADMSCs. Results of these studies provided evidence that Daphne mucronata protects the hADMSCs during stress conditions by down regulating the inflammatory markers and hence increase the viability and proliferative potential of hADMSCs that is crucial for transplantation purposes.
Aim: The aim of the present study is to use human amniotic membrane (HAM) for in vitro chondrogenesis of placenta-derived mesenchymal stem cells (MSCs) and umbilical cord-derived MSCs. Materials & methods: MSCs from the placenta and umbilical cord were isolated, characterized by immunophenotyping and after analyzing their rate of proliferation, cytotoxicity and viability, chondrogenesis was performed on plastic adherent surface and on HAM. Results: Successfully isolated and characterized placenta-derived MSCs and umbilical cord-derived MSCs revealed positive expression of MSCs markers CD90, CD73, CD105 and CD49d, while they were negative for CD45. Both types of cells in the presence of chondrogenic induction medium on plastic adherent surface and HAM showed aggregates of proteoglycan and strong expression of COL2A1 (collagen 2) and ACAN1 (aggrecan). Conclusion: HAM supported proliferation as well as chondrogenesis of MSCs and provide novelty of HAM utilization as an efficient natural delivery matrix for stem cell transplantation.
Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti‐inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti‐inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose‐derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet–visible (UV–Vis) spectroscopy, Scanning Electron Microscopy (SEM), x‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x‐ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti‐inflammatory conduct assessed through NF‐κB pathway and other associated inflammatory markers reported down‐regulation of TNF‐α (0.644 ± 0.045), IL‐1β (0.694 ± 0.147) and IL‐6 (0.622 ± 0.112), apoptosis causing genes like Caspase‐3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF‐κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF‐κB pathway.
Fractionation of the reticulocyte lysate translation products of encephalomyocarditis virus RNA by ultracentrifugation showed that the viral proteins were distributed differentially in the supernatant and the ribosomal pellet fractions. The viral noncapsid proteins C and D, which contain the viral protease sequence, sedimented preferentially with the pellet fraction. Incubation of the resuspended pellet and subsequent centrifugation of the suspension resulted in cleavage of the protease from proteins C and D and separation of the enzyme from reticulocyte particulate proteins. Preparations thus obtained contained only three encephalomyocarditis virus proteins and were almost devoid of reticulocyte proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.