An air- and moisture-stable fluoroiodane in the presence of AgBF4 is suitable for selective geminal difluorination of styrenes under mild reaction conditions. One of the C=F bonds is formed by transfer of electrophilic fluorine from the hypervalent iodine reagent, while the other one arises from the tetrafluoroborate counterion of silver. Deuterium-isotope-labelling experiments and rearrangement of methyl styrene substrates suggest that the reaction proceeds through a phenonium ion intermediate.
Regio- and stereoselective Cu-catalyzed addition of the above hypervalent iodine reagent to alkynes and alkenes was achieved. In the presence of CuI, the reaction is suitable to perform trifluoromethyl-benzoyloxylation and trifluoromethyl-halogenation of alkenes and alkynes. Electron-donating substituents accelerate the process, and alkenes react faster than alkynes emphasizing the electrophilic character of the addition reaction.
Quinones undergo copper-mediated C-H trifluoromethylation reactions using a hypervalent iodine reagent. The reactions have a broad synthetic scope involving naphtho, alkyl, chloro and methoxy quinones.
Reaction of 1,1-disubstituted cyclopropanes with hypervalent iodines in the presence of AgBF4 leads to 1,3-difluorination and 1,3-oxyfluorination products.
Styrenes with an electron-deficient double bond undergo cyanotrifluoromethylation with a trifluoromethylated hypervalent iodine reagent in the presence of CuCN. The reaction proceeds under mild conditions in the presence of bulky phosphines or B2pin2 additives. The process is highly regioselective and involves the consecutive formation of two C-C bonds in a single addition reaction. In the presence of a p-methoxy substituent in the styrene, oxytrifluoromethylation occurs instead of the cyanotrifluoromethylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.