In cardiac magnetic resonance imaging (CMR), accurate flow measurements rely on perpendicular plane-alignment with flow direction. For 2D phase contrast (PC) cardiac magnetic resonance measurements, planes have to be defined during the examination of the heart, which is time consuming and error-prone. Collection of flow information of the entire volume of the heart by a 4D flow CMR postpones plane alignment to post-processing. Sampling of such a large amount of data requires acceleration of data acquisition with techniques such as SENSitivity Encoding (k-t SENSE) or Broad-use Linear Acquisition Speed-up Technique (k-t BLAST). Objectives of the study were to compare 4D flow CMR, accelerated with two different acceleration methods with the established 2D PC CMR based on assessment of stroke volume at all four cardiac valves. The values of stroke volume acquired with the 4D flow CMR SENSE did not differ significantly when compared to the 2D PC CMR SENSE at the left side of the heart (aortic and mitral valve). Significant differences between the techniques were seen at the pulmonic and tricuspid valves. Acceleration with k-t BLAST revealed significantly lower values of stroke volume at all cardiac valves, except at the mitral valve. AbstractIn cardiac magnetic resonance imaging (CMR), accurate flow measurements rely on perpendicular plane-alignment with flow direction. For 2D phase contrast (PC) cardiac magnetic resonance measurements, planes have to be defined during the examination of the heart, which is time consuming and error-prone. Collection of flow information of the entire volume of the heart by a 4D flow CMR postpones plane alignment to post-processing. Sampling of such a large amount of data requires acceleration of data acquisition with techniques such as SENSitivity Encoding (k-t SENSE) or Broad-use Linear Acquisition Speed-up Technique (k-t BLAST). Objectives of the study were to compare 4D flow CMR, accelerated with two different acceleration methods with the established 2D PC CMR based on assessment of stroke volume at all four cardiac valves. The values of stroke volume acquired with the 4D flow CMR SENSE did not differ significantly when compared to the 2D PC CMR SENSE at the left side of the heart (aortic and mitral valve). Significant differences between the techniques were seen at the pulmonic and tricuspid valves. Acceleration with k-t BLAST revealed significantly lower values of stroke volume at all cardiac valves, except at the mitral valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.