Performance assessment is a critical aspect for any organization, as it provides them with the means to measure their performance. Decision makers and top management need to gain a comprehensive view of the capabilities and performance of decision making units (DMU's) in order to make efficient decisions and beneficial improvements. In this study a novel model has been proposed to place performance assessment outputs in linguistic form, which utilize proper trust labels. Trust labels provide explicit qualitative scales, instead of representing pure numerical data, which are more meaningful for top manager. Fifteen scenarios are formed based on two main factors: the number of decision making units and the number of timeslots, which together form the basis of the proposed method for performance assessment. The efficiency rates of the current, previous and following years, along with the average efficiency and standard deviation, are the five inputs to this model. The approach uses time series forecasting to predict the future efficiency rate and is armed with an Auto Correlation Function (ACF) for input selection. The model utilizes fuzzy t-norm and snorm as the final modeling tools. To show the applicability and superiority of the proposed model, it is applied to a data set provided by running a simulation structured by a unique logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.