Alpha-synucleinopathies (ASP) are neurodegenerative disorders, characterized by accumulation of misfolded α-synuclein, selective neuronal loss, and extensive gliosis. It is accepted that microgliosis and astrogliosis contribute to the disease progression in ASP. Toll-like receptors (TLRs) are expressed on cells of the innate immune system, including glia, and TLR4 dysregulation may play a role in ASP pathogenesis. In this study we aimed to define the involvement of TLR4 in microglial and astroglial activation induced by different forms of α-synuclein (full length soluble, fibrillized, and C-terminally truncated). Purified primary wild type (TLR4+/+) and TLR4 deficient (TLR4−/−) murine microglial and astroglial cell cultures were treated with recombinant α-synuclein and phagocytic activity, NFκB nuclear translocation, cytokine release, and reactive oxygen species (ROS) production were measured. We show that TLR4 mediates α-synuclein-induced microglial phagocytic activity, pro-inflammatory cytokine release, and ROS production. TLR4−/− astroglia present a suppressed pro-inflammatory response and decreased ROS production triggered by α-synuclein treatment. However, the uptake of α-synuclein by primary astroglia is not dependent on TLR4 expression. Our results indicate the C-terminally truncated form as the most potent inductor of TLR4-dependent glial activation. The current findings suggest that TLR4 plays a modulatory role on glial pro-inflammatory responses and ROS production triggered by α-synuclein. In contrast to microglia, the uptake of alpha-synuclein by astroglia is not dependent on TLR4. Our data provide novel insights into the mechanisms of α-synuclein-induced microglial and astroglial activation which may have an impact on understanding the pathogenesis of ASP. © 2012 Wiley Periodicals, Inc.
Purpose: The receptor tyrosine kinase Axl has recently been identified as a critical element in the invasive properties of glioma cell lines. However, the effect of Axl and its ligand growth arrestŝ pecific gene 6 (Gas6) in human gliomas is still unknown. Experimental Design: Axl and Gas6 expression was studied in 42 fresh-frozen and 79 paraffinembedded glioma specimens by means of reverse transcription-PCR and immunohistochemistry. The prognostic value of Axl and Gas6 expression was evaluated using a population-based tissue microarray derived from a cohort of 55 glioblastoma multiforme (GBM) patients.Results: Axl and Gas6 were detectable in gliomas of malignancy gradesWHO 2 to 4. Moderate to high Axl mRNA expression was found in 61%, Axl protein in 55%, Gas6 mRNA in 81%, and Gas6 proteinin 74% of GBMsamples, respectively. GBM patients withhigh Axl expression and Axl/Gas6 coexpression showed a significantly shorter time to tumor progression and an association with poorer overall survival. Comparative immunohistochemical studies showed that Axl staining was most pronounced in glioma cells of pseudopalisades and reactive astrocytes. Additionally, Axl/ Gas6 coexpression was observed in glioma cells and tumor vessels. In contrast, Axl staining was not detectable in nonneoplastic brain tissue and Gas6 was strongly expressed in neurons.Conclusions: In human gliomas, Axl and Gas6 are frequently overexpressed in both glioma and vascular cells and predict poor prognosis in GBM patients. Our results indicate that specific targeting of the Axl/Gas6 signaling pathway may represent a potential new approach for glioma treatment.
To this day, the cause of multiple system atrophy (MSA) remains stubbornly enigmatic. A growing body of observations regarding the clinical, morphological, and biochemical phenotypes of MSA has been published, but the interested student is still left without a clue as to its underlying cause. MSA has long been considered a rare cousin of Parkinson's disease and cerebellar degeneration; it is rich in acronyms but poor in genetic and environmental leads. Because of the worldwide research efforts conducted over the last two decades and the discovery of the alpha-synuclein-encoding SNCA gene as a cause of rare familial Parkinson's disease, the MSA field has seen advances on three fronts: the identification of its principal cellular target, that is, oligodendrocytes; the characterization of alpha-synuclein-rich glial cytoplasmic inclusions as a suitable marker at autopsy; and improved diagnostic accuracy in living patients resulting from detailed clinicopathological studies. The working model of MSA as a primary glial disorder was recently strengthened by the finding of dysregulation in the metabolism of myelin basic protein and p25alpha, a central nervous system-specific phosphoprotein (also called tubulin polymerization promoting protein, TPPP). Intriguingly, in early cases of MSA, the oligodendrocytic changes in myelin basic protein and p25alpha processing were recorded even before formation of glial cytoplasmic inclusions became detectable. Here, we review the evolving concept that MSA may not just be related to Parkinson's disease but also share traits with the family of demyelinating disorders. Although these syndromes vary in their respective cause of oligodendrogliopathy, they have in common myelin disruption that is often followed by axonal dysfunction.
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by parkinsonism unresponsive to dopaminergic therapy, cerebellar ataxia, and dysautonomia. Neuropathology shows a characteristic neuronal multisystem degeneration that is associated with widespread oligodendroglial alpha-synuclein (alpha-SYN) inclusions. Presently no animal model completely replicates the specific neuropathology of MSA. Here we investigated the behavioral and pathological features resulting from oligodendroglial alpha-SYN overexpression in transgenic mice exposed to mitochondrial inhibition by 3-nitropropionic acid. In transgenic mice 3-nitropropionic acid induced or augmented motor deficits that were associated with MSA-like pathology including striatonigral degeneration and olivopontocerebellar atrophy. Widespread astrogliosis and microglial activation were also observed in the presence of alpha-SYN in oligodendrocytes. Our results indicate that combined mitochondrial inhibition and overexpression of oligodendroglial alpha-SYN generates a novel model of MSA that may be useful for evaluating both pathogenesis and treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.