In this paper, the pattern of groundwater level fluctuations is investigated by statistical techniques for 24 monitoring wells located in an unconfined coastal aquifer in Sfax (Tunisia) for a time period from 1997 to 2006. Firstly, a geostatistical study is performed to characterize the temporal behaviors of data sets in terms of variograms and to make predictions about the value of the groundwater level at unsampled times. Secondly, multivariate statistical methods, i.e., principal component analysis (PCA) and cluster analysis (CA) of time series of groundwater levels are used to classify groundwater hydrographs regard to identical fluctuation pattern. Three groundwater groups (A, B, and C) were identified. In group "A," water level decreases continuously throughout the study periods with rapid annual cyclic variation, whereas in group "B," the water level contains much less high-frequency variation. The wells of group "C" represents a steady and gradual increase of groundwater levels caused by the aquifer artificial recharge. Furthermore, a cross-correlation analysis is used to investigate the aquifer response to local rainfall and temperature records. The result revealed that the temperature is more affecting the variation of the groundwater level of group A wells than the rainfall. However, the second and the third groups are less affected by rainfall or temperature.
In this study, we investigate the ability to combine a multivariate statistical analysis with the cokriging method to point out the groundwater salinization in the coastal Sfax aquifer (eastern Tunisia). First, multivariate statistical analysis such as principal component analysis (PCA) and cluster analysis were performed on 75 water samples. PCA identifies three main processes influencing groundwater chemistry which are seawater intrusion, water-rock interaction, and contamination by nitrates, these three factors accounted for 76% of total variance of the groundwater. Furthermore, cokriging is applied to take into account spatial dependence between the studied variables. Five variables were processed: concentration of sulfates, chlorides, sodium and the sodium adsorption ratio, as primary variables, and the more numerous data for total dissolved solid, as auxiliary variables. The generated spatial variability maps highlighted the high-risk zone of groundwater contamination of the superficial aquifer of Sfax. The effectiveness of the high estimation capability of the cokriging is demonstrated by cross-validation. Compared with ordinary kriging for a single variable, cokriging can provide an improvement of the uncertainty in terms of reducing the mean-squared error and mean error.
Le système phréatique du sahel de Sfax (Tunisie) constitue une source importante d’approvisionnement. Ces eaux ne cessent d’être menacées par la pollution nitrique. Dans le but de protéger cet aquifère, une étude de la vulnérabilité intrinsèque a été effectuée. Pour cela on a eu recours à l’utilisation de la méthode SI (Susceptibility Index) qui prend en considération les différents critères de vulnérabilités, régissant le processus de transfert de contaminants. Il s’agit des facteurs géologiques, hydrogéologiques, d’occupation du sol, de la topographie, ainsi que de la météorologie. Dans la présente étude, une modification de la méthode SI a été faite. Une méthode dérivée du modèle SI est présentée (SI modifié). Elle repose sur une démarche qui intègre la modélisation hydrologique sous Agriflux et les SIG. Le divers recours aux SIG a permis l’exécution des différentes opérations de calcul de débits, la création de bases de données ainsi que la cartographie des paramètres influençant la vulnérabilité. L’analyse de la carte de vulnérabilité a permis de distinguer trois zones de degrés de vulnérabilité différents allant du faible au très vulnérable. Les indices SI standard et SI modifié sont combinés, les deux indices de vulnérabilité sont mis en perspective et la pertinence des paramètres utilisés pour chacun est discutée. La cohérence des indices est comparée avec l’occurrence des nitrates dans la plaine de Sfax. La nouvelle carte a permis d’obtenir une meilleure corrélation entre les concentrations en nitrates mesurées et les zones vulnérables par rapport à la méthode originale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.