Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.
Introduction: Growing scientific evidence indicates that sphingolipids predict cardiometabolic risk, independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, it remains largely unknown if and how exercise, a simple, low-cost, and patient-empowering modality to optimise cardiometabolic health, influences sphingolipid levels. The SphingoHIIT study aims to assess the response of circulating sphingolipid species to a single session of high-intensity interval training (HIIT). Methods: This single-centre randomised controlled trial (RCT) will last 11 days per participant and aim to include 32 young and healthy individuals aged 20-29 (50% females). Participants will be randomly allocated to the HIIT (n= 16) or control groups (physical rest, n= 16). Participants will self-sample fasted dried blood spots for three consecutive days before the intervention (HIIT versus rest) to determine baseline sphingolipid levels. Dried blood spots will also be collected at five time points (2, 15, 30, 60min, and 24h) following the intervention (HIIT versus rest). To minimise the dietary influence, participants will receive a standardised diet for four days, starting 24 hours before the first dried blood sampling. For females, interventions will be timed to fall within the early follicular phase to minimise the menstrual cycle's influence on sphingolipid levels. Finally, physical activity will be monitored for the whole study duration using a wrist accelerometer. Ethics and dissemination: The Ethics Committee of Northwest and Central Switzerland approved this protocol (ID 2022–00513). Findings will be disseminated in scientific journals and meetings. Trial Registration The trial was registered on www.clinicaltrials.gov (NCT05390866, https://clinicaltrials.gov/ct2/show/NCT05390866) on May 25, 2022.
Introduction: Growing scientific evidence indicates that sphingolipids predict cardiometabolic risk, independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, it remains largely unknown if and how exercise, a simple, low-cost, and patient-empowering modality to optimise cardiometabolic health, influences sphingolipid levels. The SphingoHIIT study aims to assess the response of circulating sphingolipid species to a single session of high-intensity interval training (HIIT). Methods: This single-centre randomised controlled trial (RCT) will last 11 days per participant and aim to include 32 young and healthy individuals aged 20-29 (50% females). Participants will be randomly allocated to the HIIT (n= 16) or control groups (physical rest, n= 16). Participants will self-sample fasted dried blood spots for three consecutive days before the intervention (HIIT versus rest) to determine baseline sphingolipid levels. Dried blood spots will also be collected at five time points (2, 15, 30, 60min, and 24h) following the intervention (HIIT versus rest). To minimise the dietary influence, participants will receive a standardised diet for four days, starting 24 hours before the first dried blood sampling. For females, interventions will be timed to fall within the early follicular phase to minimise the menstrual cycle's influence on sphingolipid levels. Finally, physical activity will be monitored for the whole study duration using a wrist accelerometer. Ethics and dissemination: The Ethics Committee of Northwest and Central Switzerland approved this protocol (ID 2022–00513). Findings will be disseminated in scientific journals and meetings. Trial Registration The trial was registered on www.clinicaltrials.gov (NCT05390866, https://clinicaltrials.gov/ct2/show/NCT05390866) on May 25, 2022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.