In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Significant improvement in the understanding of mesenchymal stem cell (MSC) biology has opened the way to their clinical use. However, concerns regarding the possibility that MSCs undergo malignant transformation have been raised. We investigated the susceptibility to transformation of human bone marrow (BM)-derived MSCs at different in vitro culture time points. MSCs were isolated from BM of 10 healthy donors and propagated in vitro until reaching either senescence or passage (P) 25. MSCs in the senescence phase were closely monitored for 8 to 12 weeks before interrupting the cultures. The genetic characterization of MSCs was investigated through array-comparative genomic hybridization (array-CGH), conventional karyotyping, and subtelomeric fluorescent in situ hybridization analysis both before and after prolonged culture. MSCs were tested for the expression of telomerase activity, human telomerase reverse transcriptase (hTERT) transcripts, and alternative lengthening of telomere (ALT) mechanism at different passages. A huge variability in terms of proliferative capacity and MSCs life span was noted between donors. In eight of 10 donors, MSCs displayed a progressive decrease in proliferative capacity until reaching senescence. In the remaining two MSC samples, the cultures were interrupted at P25 to pursue data analysis. Array-CGH and cytogenetic analyses showed that MSCs expanded in vitro did not show chromosomal abnormalities. Telomerase activity and hTERT transcripts were not expressed in any of the examined cultures and telomeres shortened during the culture period. ALT was not evidenced in the MSCs tested. BM-derived MSCs can be safely expanded in vitro and are not susceptible to malignant transformation, thus rendering these cells suitable for cell therapy approaches.
Limited information is available concerning the expression and role of microRNAs in prostate cancer. In this study, we investigated the involvement of miR-205 in prostate carcinogenesis. Significantly lower miR-205 expression levels were found in cancer than in normal prostate cell lines as well as in tumor compared with matched normal prostate tissues, with a particularly pronounced reduction in carcinomas from patients with local-regionally disseminated disease. Restoring the expression of miR-205 in prostate cancer cells resulted in cell rearrangements consistent with a mesenchymalto-epithelial transition, such as up-regulation of E-cadherin and reduction of cell locomotion and invasion, and in the down-regulation of several oncogenes known to be involved in disease progression (i.e., interleukin 6, caveolin-1, EZH2). Our evidence suggests that these events are driven by the concurrent repression of specific predicted miR-205 targets, namely N-chimaerin, ErbB3, E2F1, E2F5, ZEB2, and protein kinase CE. Strikingly, the latter seemed to play a direct role in regulating epithelial-to-mesenchymal transition. In fact, its down-regulation led to a cell phenotype largely reminiscent of that of cells ectopically expressing miR-205. Overall, we showed for the first time that miR-205 exerts a tumorsuppressive effect in human prostate by counteracting epithelial-to-mesenchymal transition and reducing cell migration/invasion, at least in part through the downregulation of protein kinase CE. [Cancer Res 2009;69(6):2287-95]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.