Tendon tissue engineering requires the generation of a uniaxially orientated collagen type I matrix with several organization scales that confer mechanical functionality upon the tendon. A combination of factors in a dose- and time-dependent manner, such as growth factors and mechanical environment, may be the key to an in vitro-engineered tendon. To define the progress of tissue development within a scaffold, on-line systems need to be applied to monitor the newly generated matrix. To address this challenge, we designed a new porous chitosan scaffold with microchannels (diameter: 250 microm), which allows primary porcine tenocytes to proliferate in a bundle-like structure. The cell proliferation and extracellular matrix (ECM) production within the microchannels were successfully assessed under sterile conditions using optical coherence tomography (OCT). A semi-quantitative method that calculated the microchannel occupation ratio (the degree of cell proliferation and tissue turnover based on the total backscattered intensity in the microchannels) was developed. We further investigated the effect of different culture conditions on tendon cell matrix formation. Using a perfusion bioreactor, we demonstrated how fluid flow can increase (p < 1e(3)) ECM production within the microchannels significantly more than static culture. Our study illustrates how using a guiding scaffold in combination with the fast and non-destructive assessment of the microstructure using OCT allows discrimination between the parameters affecting the production and the organization of the ECM.
The aim of the present study was to test the hypothesis that both scaffold material and the type of cell culturing contribute to the results of in vivo osteogenesis in tissue-engineered constructs in an interactive manner. CaCO3 scaffolds and mineralized collagen scaffolds were seeded with human trabecular bone cells at a density of 5 x 10(6) cells/cm(3) and were left to attach under standard conditions for 24 h. Subsequently, they were submitted to static and dynamic culturing for 14 days (groups III and IV, respectively). Dynamic culturing was carried out in a continuous flow perfusion bioreactor. Empty scaffolds and scaffolds that were seeded with cells and kept under standard conditions for 24 h served as controls (groups I and II, respectively). Five scaffolds of each biomaterial and from each group were implanted into the gluteal muscles of rnu rats for 6 weeks. Osteogenesis was assessed quantitatively by histomorphometry and expression of osteocalcin (OC) and vascular endothelial growth factor (VEGF) was determined by immunohistochemistry. CaCO3 scaffolds exhibited 15.8% (SD 3.1) of newly formed bone after static culture and 22.4% (SD 8.2) after dynamic culture. Empty control scaffolds did not show bone formation, and scaffolds after 24 h of standard conditions produced 8.2% of newly formed bone (SD 4.0). Differences between the controls and the scaffolds cultured for 14 days were significant, but there was no significant difference between static and dynamic culturing. Mineralized collagen scaffolds did not show bone formation in any group. There was a significant difference in the expression of OC within the scaffolds submitted to static versus dynamic culturing in the CaCO3 scaffolds. VEGF expression did not show significant differences between static and dynamic culturing in the two biomaterials tested. It is concluded that within the limitations of the study the type of biomaterial had the dominant effect on in vivo bone formation in small tissue-engineered scaffolds. The culture period additionally affected the amount of bone formed, whereas the type of culturing may have had a positive effect on the expression of osteogenic markers but not on the quantity of bone formation.
Cellular therapies that either use modifications of a patient’s own cells or allogeneic cell lines are becoming in vogue. Besides the technical issues of optimal isolation, cultivation and modification, quality control of the generated cellular products are increasingly being considered to be more important. This is not only relevant for the cell’s therapeutic application but also for cell science in general. Recent changes in editorial policies of respected journals, which now require proof of authenticity when cell lines are used, demonstrate that the subject of the present paper is not a virtual problem at all. In this article we provide 2 examples of contaminated cell lines followed by a review of the recent developments used to verify cell lines, stem cells and modifications of autologous cells. With relative simple techniques one can now prove the authenticity and the quality of the cellular material of interest and therefore improve the scientific basis for the development of cells for therapeutic applications. The future of advanced cellular therapies will require production and characterization of cells under GMP and GLP conditions, which include proof of identity, safety and functionality and absence of contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.