Disaster management is a process that includes mitigation, preparedness, response and recovery stages. Operational strategies covering all stages must be developed in order to alleviate the negative effects of the disasters. In this study, we aimed at minimizing the number of casualties that could not be transported to the hospitals after the disaster, the number of additional ambulances required in the response stage, and the total transportation time. Besides, we assumed that a data-driven decision support tool is employed to track casualties and up-to-date hospital capacities, so as to direct the ambulances to the available hospitals. For this purpose, a multi-objective two-stage stochastic programming model was developed. The model was applied to a district in Istanbul city of Turkey, for a major earthquake. Accordingly, the model was developed with a holistic perspective with multiple objectives, periods and locations. The developed multi-objective stochastic programming model was solved using an improved version of the augmented ε-constraint (AUGMECON2) method. Hence, the Pareto optimal solutions set has been obtained and compared with the best solution achieved according to the objective of total transportation time, to see the effect of the ambulance direction decisions based on hospital capacity availability. All of the decisions examined in these comparisons were evaluated in terms of effectiveness and equity. Finally, managerial implication strategies were presented to contribute decision-makers according to the results obtained. Results showed that without implementing a data-driven decision support tool, equity in casualty transportation cannot be achieved among the demand points.
Purpose The purpose of this paper is to statistically assess the effects of the design factors including usage of data-driven decision support tool (DST), classification of patients (triage), prioritization based on vital scores of patients, number of ambulances and hospital selection rules, on the casualty transportation system’s performance in large-scale disasters. Besides, a data-driven DST for casualty transportation is proposed to enhance the casualty survival and ambulance transportation times during the disaster response stage. Design/methodology/approach In this study, the authors applied simulation and statistical analysis to evaluate the effects of usage of data-driven DST, classification of patients (triage), prioritization of the patients based on vital scores, number of ambulances and hospital selection rules, on the patient survival and transportation time of the casualty transportation system. An experimental design was made, and 16 scenarios were formulated. Simulation models were developed for all scenarios. The number of unrecoverable casualties and time-spent by the casualties until arriving at the hospital was observed. Then, a statistical analysis was applied to the simulation results, and significant factors were determined. Findings Utilization of the proposed DST was found to improve the casualty transportation and coordination performance. All main effects of the design factors were found statistically significant for the number of unrecoverable casualties. Besides, for the Time spent Until Arrival of T1-Type Casualty at the Hospital, all of the main factors are significant except the number of ambulances. Respiratory rate, pulse rate, motor response score priority and hospital selection rule based on available hospital capacities must be considered to reduce the number of unrecoverable casualties and time spent until arrival of the casualties at the hospitals. Originality/value In this study, the factors that significantly affect the performance of the casualty transportation system were revealed, by simulation and statistical analysis, based on an expected earthquake case, in a metropolitan city. Besides, it was shown that using a data-driven DST that tracks victims and intends to support disaster coordination centers and medical staff performing casualty transportation significantly improves survival rate of the victims and time to deliver the casualties. This research considers the whole systems’ components, contributes to developing the response stage operations by filling gaps between using the data-driven DST and casualty transportation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.