Interactions of melatonin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes (MLVs) were investigated as a function of temperature and melatonin concentration (1-30 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The investigation of the C-H, CO, and PO2- antisymmetric double stretching modes in FTIR spectra and DSC studies reveal that melatonin changes the physical properties of the DPPC bilayers by decreasing the main phase transition temperature, abolishing the pretransition, ordering the system in the gel phase, and increasing the dynamics of the system both in the gel and liquid crystalline phases. It also causes significant decrease in the wavenumber for the CO stretching and PO2- antisymmetric double bond stretching bands, which indicates strong hydrogen bonding The results imply that melatonin locates in the interfacial region of the membrane. Furthermore, in the DSC curve, more than one signal is observed at high melatonin concentrations (24 and 30 mol%), which indicates melatonin-induced phase separation in DPPC membranes.
Tamoxifen (TAM) is a non-steroidal antiestrogen drug, which is widely used to prevent and treat breast, liver, pancreas and brain cancers. The present work investigates, in detail, the concentration dependent behavior of TAM (varying from 1 mol% to 45 mol%) on membrane fluidity. The differential scanning calorimetry (DSC) studies showed that tamoxifen eliminates the pre-transition and decreases the main phase transition to lower temperatures. Using visible spectroscopy at 440 nm and Fourier transform infrared (FTIR) spectroscopy it was found that membrane dynamics decreases for 1 and 3 mol% tamoxifen in both the gel and liquid crystalline phases. Above these concentrations up to 18-24 mol%, it increases and reaches its maximum values. As tamoxifen concentration was further increased, the membrane dynamics is found to be gradually decreased, although TAM still has fluidifying effect in comparison to pure phospholipid membrane. These findings are important for the effective use of tamoxifen in the cancer therapy to eliminate its dose dependent side effects reported in the literature.
Binary and tertiary mixture of alpha-tocophenol, cholesterol and dimyristoylphosphatidylcholine in the form of multilamellar liposomes were investigated by Fourier Transform Infrared and visible spectroscopy. Results of the FTIR and turbidity experiments indicate that alpha T decreases or diminishes the effect of cholesterol on the frequency and the bandwidth of the C-H stretching, CH2 scissoring and C = O stretching bands in FTIR spectra and the turbidity measurements (recorded as absorbance values at 440 nm) in phospholipid model membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.