With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.
In this article, the variability of physical settings of anchialine systems in Indonesia is discussed together with the consequences these settings have for the environment and biota within the systems. Exploration in two karstic areas (Berau, East Kalimantan and Raja Ampat, West Papua) has resulted in the discovery of 20 previously unknown anchialine systems in Indonesia. Based on parameters such as bathymetry, size, coastline, salinity, water temperature, pH, degree of connection to the sea, and the presence-absence of selected key taxa we distinguish three types of (non-cave) anchialine systems in the Indo-Pacific: (1) Marine lakes with large and deep basins containing brackish to almost fully marine waters. Marine lakes show a range in the degree of connection to the sea with the result that the higher the connection the more the lake resembles a lagoon in both water chemistry and biota, while the more isolated lakes have brackish water and contain unique species that are rarely found in the adjacent sea. (2) Anchialine pools with small and shallow basins containing brackish water and low diversity of macrofauna. (3) Blue pools in chasms that contain water with a clear halocline and are possibly connected to anchialine caves. Study of the many unique features of anchialine systems will enhance our understanding of the physical and ecological processes responsible for diversification in tropical shallow marine environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.