This paper describes a tectonostratigraphic model of the synrift evolution of the Early Jurassic High Atlas rift of Morocco. The model is constrained by mapping of a set of inverted extensional blocks, by facies analysis of carbonate platform and turbiditic to hemipelagic synrift deposits, and by high-resolution (n 3 100 ka) biostratigraphy of the Early Jurassic succession. The chronostratigraphic packages of the High Atlas of Rich vary significantly in thickness, facies and architecture from one tectonic block to another. Our study shows how synrift strain varied in space and time over a long time interval (14 Ma) around the High Atlas rift. Initially, in Sinemurian time, the High Atlas rift was affected by low-strain normal faulting that controlled the growth of an extensive, low-gradient carbonate platform, except in the northern domain (towards the rift axis), where hemipelagic deposition related to high-rate faulting prevailed. Subsequently, in Carixian-Domerian time, a rapid increase in accommodation space and block subsidence caused by highstrain normal faulting brought about localized drowning of the carbonate platform and the development of calciturbidites and of starved deposits towards the rift axis. During this interval, high-strain, upper-crustal normal faulting migrated rapidly (over a period of 5 Ma) towards the rift periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.