In this paper, we derive a generalized multiplicative Hardy-LittlewoodPolya type inequality, as well as several related additive inequalities, for functions of operators in Hilbert spaces. In addition, we find the modulus of continuity of a function of an operator on a class of elements defined with the help of another function of the operator. We then apply the results to solve the following problems: (i) the problem of approximating a function of an unbounded self-adjoint operator by bounded operators, (ii) the problem of best approximation of a certain class of elements from a Hilbert space by another class, and (iii) the problem of optimal recovery of an operator on a class of elements given with an error.Keywords Inequalities of Hardy-Littlewood-Polya type · functions of operators · modulus of continuity · best approximation of unbounded operators · optimal recovery of operators Mathematics Subject Classification (2000) MSC 26D10 · MSC 47A63 · MSC 41A17 · MSC 47A58
In this paper we obtained generalisations of the L. V. Taikov’s and N. Ainulloev’s sharp inequalities, which estimate a norm of function's first-order derivative (L. V. Taikov) and a norm of function's second-order derivative (N. Ainulloev) via the modulus of continuity or the modulus of smoothness of the function itself and the modulus of continuity or the modulus of smoothness of the function's second-order derivative. The generalisations are obtained on the power of unbounded self-adjoint operators which act in a Hilbert space. The moduli of continuity or smoothness are defined by a strongly continuous group of unitary operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.