Hypercoagulability is now a recognized complication of COVID-19 infection. Despite this, splenic infarction remains rare and is often found incidentally, radiologically, or at autopsy. We report a case of symptomatic splenic infarction with superimposed infection, secondary to COVID-19-induced hypercoagulability in a young patient with paradoxical emboli due to an undiagnosed patent foramen ovale (PFO). This multifactorial case should prompt a level of suspicion of the patient with unexplained abdominal pain and recent COVID-19 infection.
Mixed convective flow of a viscous incompressible electrically conducting micropolar fluid along a semi-infinite inclined permeable flat plate with viscous dissipation has been analyzed numerically. With appropriate transformations the boundary layer equations are transformed into a set of nonlinear ordinary differential equations. The local similarity solutions of the transformed dimensionless equations for the flow, microrotation and the heat transfer characteristics are evaluated using Nachtsheim-Swigert shooting iteration technique (guessing the missing value) together with sixth order Runge-Kutta-Butcher integration scheme. Numerical results are presented in the form of non-dimensional velocity, microrotation and temperature profiles within the boundary layer for different parameters entering into the analysis. The effects of pertinent parameters on the local skin friction coefficient (viscous drag), plate couple stress and rate of heat transfer (Nusselt number) are also displayed graphically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.