This review summarises the state of knowledge on acoustic emission (AE) techniques applied to material property evaluation during indentation (e.g. hardness) testing. There are two aspects of application of AE technique to indentation which makes it unique, i.e. (1) enhancing the understanding of the evolution of material accommodation mechanisms under loading and (2) qualitative and quantitative evaluation of mechanical properties such as fracture toughness and bond strength from the AE signal. Both of these aspects have the potential to improve our understanding of the structure property relationships of current and future generation materials. In addition, the knowledge developed here can be incorporated to improve the AE based condition monitoring systems for stress critical applications. This review concentrates on the phenomena which occur during indentation and how its examination can be used to study more fundamental behaviour of materials such as deformation and fracture. The uncertainty in quantifying and measuring the total crack surface in indentation makes a simple fracture mechanics based assessment of toughness difficult. It is therefore expected that correlation between AE and fracture patterns will lead to an improved method for material's quality evaluation. The main part of this review is presented on AE of material classifications. These classifications include ceramics, glasses, composites, metals and metallic foams, thin solid films and thermally sprayed coatings. Apart from quasi-static indentation testing, attention has also been paid to studies on various AE instrumented indentation systems so that information can be derived about the progress of deformation and cracking processes. This review discusses the studies summarising those aspects that have so far been established and the areas of controversy and/or lack of knowledge. The prospect of using AE techniques to monitor indentation tests is also assessed, taking into account those few studies that have been reported so far in different groups of materials. Although with some limitations, it is concluded that AE monitored indentation testing has considerable scope to assess in much more detail the deformation and cracking properties of materials under localised stress condition. It is possible to construct empirical relationships and develop theoretical understanding linking mechanical parameters with AE signal characteristics and its derived features. However, the occurrence of multiple events at different locations superimposing the AE signal requires more advanced signal processing techniques. With the advancement of very thin films and nanomaterials, it is anticipated that AE response measured during nanoindentation will be critical for enhancing our understanding of future generation applications, as it allows individual events to be investigated without resorting to more complex signal processing techniques. In terms of material accommodation, the understanding of physical mechanisms generating AE require a multiscale approach, e...
This paper describes how acoustic emission (AE) measurements can be used to supplement the mechanical information available from an indentation test. It examines the extent to which AE data can be used to replace time-consuming surface crack measurement data for the assessment of fracture toughness of brittle materials. AE is known to be sensitive to fracture events and so it was expected that features derived from the AE data may provide information on the processes (microscale and macroscale fracture events and densification) occurring during indentation. AE data were acquired during indentation tests on samples of a WC-12%Co coating of nominal thickness 300 lm at a variety of indentation loads. The raw AE signals were reduced to three stages and three features per stage, giving nine possible indicators per indentation. Each indicator was compared with the crack profile, measured both conventionally and using a profiling method which gives the total surface crack length around the indent. A selection of the indents was also sectioned in order to make some observations on the subsurface damage. It has been found that reproducible AE signals are generated during indentation involving three distinct stages, associated, respectively, with nonradial cracking, commencement of radial cracking, and continued descent of the indenter. It has been shown that AE can give at least as good a measure of cracking processes during indentation as is possible using crack measurement after indentation.
Sliding wear evaluation of nanostructured coatings deposited by Suspension High Velocity OxyFuel (S-HVOF) and conventional HVOF (Jet Kote (HVOF-JK) and JP5000 (HVOF-JP)) spraying were evaluated. S-HVOF coatings were nanostructured and deposited via an aqueous based suspension of the WC-Co powder, using modified HVOF (TopGun) spraying. Microstructural evaluations of these hardmetal coatings included X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX). Sliding wear tests on coatings were conducted using a ball-on-flat test rig against steel, silicon nitride (Si 3 N 4 ) ceramic and WC-6Co balls. Results indicated that nanosized particles inherited from the starting powder in S-HVOF spraying were retained in the resulting coatings. Significant changes in the chemical and phase composition were observed in the S-HVOF coatings. Despite decarburization, the hardness and sliding wear resistance of the S-HVOF coatings was comparable to the HVOF-JK and HVOF-JP coatings. The sliding wear performance was dependent on the ball-coating test couple. In general a higher ball wear rate was observed with lower coating wear rate. Comparison of the total (ball and coating) wear rate indicated that for steel and ceramic balls, HVOF-JP coatings performed the best followed by the S-HVOF and HVOF-JK coatings. For the WC-Co ball tests, average performance of S-HVOF was better than that of HVOF-JK and HVOF-JP coatings. Changes in sliding wear 1 Corresponding author R.Ahmed@hw.ac.uk 2 behavior were attributed to the support of metal matrix due to relatively higher tungsten, and uniform distribution of nanoparticles in the S-HVOF coating microstructure. The presence of tribofilm was also observed for all test couples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.