Alpha rhythm (8 to 12 Hz) observed in EEG over human posterior cortex is prominent during eyes‐closed (EC) resting and attenuates during eyes‐open (EO) resting. Research shows that the degree of EC‐to‐EO alpha blocking or alpha desynchronization, termed alpha reactivity here, is a neural marker of cognitive health. We tested the role of acetylcholine in EC‐to‐EO alpha reactivity by applying a multimodal neuroimaging approach to a cohort of young adults and a cohort of older adults. In the young cohort, simultaneous EEG‐fMRI was recorded from twenty‐one young adults during both EO and EC resting. In the older cohort, functional MRI was recorded from forty older adults during EO and EC resting, along with FLAIR and diffusion MRI. For a subset of twenty older adults, EEG was recorded during EO and EC resting in a separate session. In both young and older adults, functional connectivity between the basal nucleus of Meynert (BNM), the major source of cortical acetylcholine, and the visual cortex increased from EC to EO, and this connectivity increase was positively associated with alpha reactivity; namely, the stronger the BNM‐visual cortex functional connectivity increase from EC to EO, the larger the EC‐to‐EO alpha desynchronization. In older adults, lesions of the fiber tracts linking BNM and visual cortex quantified by leukoaraiosis volume, associated with reduced alpha reactivity. These findings support a role of acetylcholine and particularly cholinergic pathways in mediating EC‐to‐EO alpha reactivity and suggest that impaired alpha reactivity could serve as a marker of the integrity of the cholinergic system.
Voxel-based morphometry (VBM) studies of Parkinson's disease (PD), have yielded mixed results, possibly due to several studies not accounting for common nuisance variables (age, sex, and total intracranial volume [TICV]). TICV is particularly important because there is evidence for larger TICV in PD. We explored the influence of these covariates on VBM by 1) comparing PD patients and controls before adding covariates, after adding age and sex, and after adding age, sex and TICV, and 2) by comparing controls split into large and small TICV before and after controlling for TICV, with age and sex accounted for in both analyses. Experiment 1 consisted of 40 PD participants and 40 controls. Experiment 2 consisted of 88 controls median split by TICV. All participants completed an MRI on a 3 T scanner. TICV was calculated as gray + white + CSF from Freesurfer. VBM was performed on T1 images using an optimized VBM protocol. Volume differences were assessed using a voxel-wise GLM analysis. Clusters were considered significant at >10 voxels and p < .05 corrected for familywise error. Before controlling for covariates, PD showed reduced GM in temporal, occipital, and cerebellar regions. Controlling for age and sex did not affect the pattern of significance. Controlling for TICV reduced the size of the significant region although it still contained portions of bilateral temporal lobes, occipital lobes and cerebellum. The large TICV group showed reduced volume in temporal, parietal, and cerebellar areas. None of these differences survived controlling for TICV. This demonstrates that TICV influences VBM results independently from other factors. Controlling for TICV in VBM studies is recommended.
Fatigue is one of the most common and disabling nonmotor symptoms seen in Parkinson's disease (PD) and is also commonly seen in healthy older adults. Our understanding of the etiology of fatigue in older adults with or without PD is limited and it remains unclear whether fatigue in PD is specifically related to PD pathology. The objective of this study was thus to determine whether fatigue in PD was associated with structural changes in gray or white matter and explore whether these changes were similar in older adults without PD. Magnetic resonance imaging (T 1 weighted) and diffusion tensor imaging were performed in 60 patients with PD (17 females; age = 67.58 ± 5.51; disease duration = 5.67 ± 5.83 years) and 41 age- and sex- matched healthy controls. FSL image processing was used to measure gray matter volume, fractional anisotropy, and leukoariosis differences. Voxel-based morphometry confirmed gray matter loss across the dorsal striatum and insula in the PD patient cohort. PD patients with fatigue had reduced gray matter volume in dorsal striatum relative to PD patients without fatigue (P < 0.05 False Discovery Rate corrected). No significant fatigue-related structural atrophy was found in controls. There were no areas of significant fractional anisotropy differences between high and low fatigue subjects in either the PD or non-PD groups. Control participants with high fatigue, but not PD, showed significantly greater total leukoariosis volumes (p = 0.03). Fatigue in PD is associated with unique structural changes in the caudate and putamen suggesting fatigue in PD is primarily related to PD pathology, particularly in the dorsal striatum, and not simply a consequence of aging.
The caudate nucleus plays important roles in cognition and affect. Depending on associated connectivity and function, the caudate can be further divided into dorsal and ventral aspects. Dorsal caudate, highly connected to dorsolateral prefrontal cortex (DLPFC), is implicated in executive function and working memory; ventral caudate, more interconnected with the limbic system, is implicated in affective functions such as pain processing. Clinically, certain brain disorders are known to differentially impact dorsal and ventral caudate. Thus, precise parcellation of caudate has both basic and clinical neuroscience significance. In young adults, past work has combined resting-state fMRI functional connectivity with clustering algorithms to define dorsal and ventral caudate. Whether the same approach is effective in older adults and how to validate the parcellation results have not been considered. We addressed these problems by obtaining resting-state fMRI data from 56 older non-demented adults (age: 69.07 ± 5.92 years and MOCA: 25.71 ± 2.46) along with a battery of cognitive and clinical assessments. Connectivity from each voxel of caudate to the rest of the brain was computed using cross correlation. Applying the K-means clustering algorithm to the connectivity patterns with K = 2 yielded two substructures within caudate, which agree well with previously reported dorsal and ventral divisions of caudate. Furthermore, dorsal-caudate-seeded functional connectivity was shown to be more strongly associated with working memory and fluid reasoning composite scores, whereas ventral-caudate-seeded functional connectivity more strongly associated with pain and fatigue severity. These results demonstrate that dorsal and ventral caudate can be reliably identified by combining resting-state fMRI and clustering algorithms in older adults.
ObjectiveThis prospective investigation examined: 1) processing speed and working memory relative to other cognitive domains in non-demented medically managed idiopathic Parkinson’s disease, and 2) the predictive role of cortical/subcortical gray thickness/volume and white matter fractional anisotropy on processing speed and working memory.MethodsParticipants completed a neuropsychological protocol, Unified Parkinson’s Disease Rating Scale, brain MRI, and fasting blood draw to rule out vascular contributors. Within group a priori anatomical contributors included bilateral frontal thickness, caudate nuclei volume, and prefrontal white matter fractional anisotropy.ResultsIdiopathic Parkinson’s disease (n = 40; Hoehn & Yahr stages 1–3) and non-Parkinson’s disease ‘control’ peers (n = 40) matched on demographics, general cognition, comorbidity, and imaging/blood vascular metrics. Cognitively, individuals with Parkinson’s disease were significantly more impaired than controls on tests of processing speed, secondary deficits on working memory, with subtle impairments in memory, abstract reasoning, and visuoperceptual/spatial abilities. Anatomically, Parkinson’s disease individuals were not statistically different in cortical gray thickness or subcortical gray volumes with the exception of the putamen. Tract Based Spatial Statistics showed reduced prefrontal fractional anisotropy for Parkinson’s disease relative to controls. Within Parkinson’s disease, prefrontal fractional anisotropy and caudate nucleus volume partially explained processing speed. For controls, only prefrontal white matter was a significant contributor to processing speed. There were no significant anatomical predictors of working memory for either group.ConclusionsCaudate nuclei volume and prefrontal fractional anisotropy, not frontal gray matter thickness, showed unique and combined significance for processing speed in Parkinson’s disease. Findings underscore the relevance for examining gray-white matter interactions and also highlight clinical processing speed metrics as potential indicators of early cognitive impairment in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.