Co-stimulation via receptors of the tumor necrosis factor superfamily (TNFSF) emerges as promising strategy to support antitumor immune responses. Targeted strategies with antibody-fusion proteins composed of a tumor-directed antibody part and the extracellular domain of a co-stimulatory ligand of the TNFSF constitute an attractive option to focus the co-stimulatory activity to the tumor site. Since TNFSF members intrinsically form functional units of non-covalently linked homotrimers, the protein engineering of suitable antibody-fusion proteins is challenging. Aiming for molecules of simple and stable configuration, we used TNFSF ligands in a single-chain format (scTNFSF), i.e., three units of the ectodomain connected by polypeptide linkers, folding into an intramolecular trimer. By fusing tumordirected scFv antibody fragments directed against EpCAM or FAP to co-stimulatory scTNFSF molecules (sc4-1BBL, scOX40L, scGITRL or scLIGHT), a set of monomeric scFv-scTNFSF fusion proteins was generated. In comparison to the scFv-TNFSF format, defined by intermolecular homotrimerization via the TNFSF part, scFv-scTNFSF showed equal or enhanced co-stimulatory activity despite reduced avidity in antibody binding. In addition, enhanced serum stability and improved bioavailability in mice were observed. We show that the scFv-scTNFSF format can be applied to various members of the TNFSF, presenting targeting-dependent co-stimulatory activity. Hence, this format exhibits favorable properties that make it a promising choice for further therapeutic fusion protein development.Abbreviations: EpCAM, epithelial cell adhesion molecule; ED-A, fibronectin extradomain A; FAP, fibroblast activation protein; GITRL, glucocorticoid-induced tumor necrosis factor receptor (GITR) ligand; LIGHT, homologous to lymphotoxins, shows inducible expression and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator (HVEM), a receptor expressed by T lymphocytes; mAb, monoclonal antibody; scFv, single-chain fragment variable; TNF, tumor necrosis factor; TNFSF, tumor necrosis factor superfamily; TRAIL, TNF-related apoptosis inducing ligand
HER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.
Multivalent mono-or bispecific antibodies are of increasing interest for therapeutic applications, such as efficient receptor clustering and activation, or dual targeting approaches. Here, we present a novel platform for the generation of Ig-like molecules, designated diabody-Ig (Db-Ig). The antigen-binding site of Db-Ig is composed of a diabody in the V H-V L orientation stabilized by fusion to antibody-derived homo-or heterodimerization domains, e.g., C H 1/C L or the heavy chain domain 2 of IgE (EHD2) or IgM (MHD2), further fused to an Fc region. In this study, we applied the Db-Ig format for the generation of tetravalent bispecific antibodies (2 + 2) directed against EGFR and HER3 and utilizing different dimerization domains. These Db-Ig antibodies retained the binding properties of the parental antibodies and demonstrated unhindered simultaneous binding of both antigens. The Db-Ig antibodies could be purified by a single affinity chromatography resulting in a homogenous preparation. Furthermore, the Db-Igs were highly stable in human plasma. Importantly, only one short peptide linker (5 aa) per chain is required to generate a Db-Ig molecule, reducing the potential risk of immunogenicity. The presence of a fully functional Fc resulted in IgG-like pharmacokinetic profiles of the Db-Ig molecules. Besides tetravalent bispecific molecules, this modular platform technology further allows for the generation of other multivalent molecules of varying specificity and valency, including mono-, bi-, tri-and tetraspecific molecules, and thus should be suitable for numerous applications.
The frequent activation of HER3 signaling as a resistance mechanism to EGFR-targeted therapy has motivated the development of combination therapies that block more than one receptor tyrosine kinase. Here, we have developed a novel tetravalent, bispecific single-chain diabody-Fc fusion protein targeting EGFR and HER3 (also known as ErbB3) that integrates the antigen-binding sites of a humanized version of cetuximab as well as a recently developed anti-HER3 antibody, IgG 3-43. This bispecific antibody combines the binding and neutralizing properties of the parental antibodies, as observed in biochemical and in vitro two-dimensional and threedimensional cell culture assays, and gave rise to long-lasting growth suppression in a subcutaneous xenograft head and neck tumor model. In triple-negative breast cancer (TNBC) cell lines, treatment with the bispecific antibody inhibited the proliferation and oncosphere formation efficiency driven by HER3 signaling. In an orthotopic MDA-MB-468 tumor model, this translated into antitumor effects superior to those obtained by the parental antibodies alone or in combination and was associated with a reduced number of cells with stem-like properties. These findings demonstrate that the bispecific antibody efficiently blocks not only TNBC proliferation, but also the survival and expansion of the cancer stem cell population, holding promise for further preclinical development.
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Ra-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_ scGITRL in a lung tumor mouse model in vivo. Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.