A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the F. oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant F. oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P. fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant F. oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant F. oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six F. oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within F. oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.
Root and stem rot (RSR) is a very detrimental disease of vanilla worldwide. Fusarium oxysporum is frequently associated with the disease but other Fusarium species are also reported. In this international study, 52 vanilla plots were surveyed in three of the most important vanilla producing countries (Madagascar, Reunion Island and French Polynesia) in order to determine the aetiology of RSR disease. Subsets from the 377 single‐spored Fusarium isolates recovered from rotten roots and stems in the surveys were characterized by molecular genotyping (EF1α and IGS gene sequences) and pathogenicity assays on Vanilla planifolia and V. ×tahitensis, the two commercially grown vanilla species. Fusarium oxysporum was shown to be the principal species responsible for the disease, representing 79% of the isolates recovered from the RSR tissues, 40% of which induced severe symptoms on inoculated plantlets. Fusarium oxysporum isolates were highly polyphyletic regardless of geographic origin or pathogenicity. Fusarium solani, found in 15% of the samples and inducing only mild symptoms on plantlets, was considered a secondary pathogen of vanilla. Three additional Fusarium species were occasionally isolated in the study (F. proliferatum, F. concentricum and F. mangiferae) but were nonpathogenic. Histopathological preparations observed in wide field and multiphoton microscopy showed that F. oxysporum penetrated the root hair region of roots, then invaded the cortical cells where it induced necrosis in both V. planifolia and V. ×tahitensis. The hyphae never invaded the root vascular system up to 9 days post‐inoculation. As a whole, the data demonstrated that RSR of vanilla is present worldwide and that its causal agent should be named F. oxysporum f. sp. radicis‐vanillae.
The effect of the plant on the diversity of soilborne populations of Fusarium oxysporum was assessed after successive cultures of flax, melon, tomato, and wheat in separate samples of the same soil. Forty soil-borne isolates of F. oxysporum and forty root-colonizing isolates of each plant species were sampled during the first (T0) and fourth (T1) cultures. The population structures were assessed by a genotypic method based on restriction fragment analysis of polymerase chain reaction-amplified ri-bosomal intergenic spacer (IGS) DNA. Sixteen IGS types were defined among the four hundred isolates analyzed. The distributions of soil isolates among IGS types were similar at both sampling times. The structure of F. oxysporum populations associated with the roots of flax or melon did not differ from the structure of soilborne populations. In contrast, the structure of F. oxysporum populations associated with roots of wheat or tomato differed from the structure of soilborne populations. High frequencies were found for IGS type 4 among wheat isolates at both T0 and T1 and for IGS type 11 among tomato isolates at T1. Moreover, a high level of genetic divergence was obtained between IGS types 4 and 11. Our results suggest that tomato and wheat have a selective effect on soilborne populations of F. oxysporum and that this effect seems to be plant specific.
The genetic diversity of soil-borne populations of Fusarium oxysporum was assessed using 350 isolates collected from six different French soils. All isolates were characterised by restriction fragment analysis of the PCR-amplified ribosomal intergenic spacer (IGS). Twenty-six IGS types were identified among the 350 isolates analysed. Five to nine different IGS types were detected in each soil. None of the IGS types was common to all of the soils. An analysis of the molecular variance based on IGS type relationships and frequency revealed that the genetic structure of the populations of F. oxysporum varied widely among the soils. Some populations were both highly diverse within the soils and differentiated between the soils. A possible relationship between the intrapopulation or interpopulation level of diversity and some external factors such as the soil type or the crop history was evaluated. A subsample representative of the diversity of the six populations was further characterised by analysing the genomic distribution of two transposable elements, impala and Fot1. One to 10 copies of the impala element were present in most of the isolates, irrespective of their soil of origin. The Fot1 element was only detected in 40% of the isolates originating from the three populations less diverse in terms of IGS types, but in 82.6% of the isolates originating from the three more diverse populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.