Cardio-facio-cutaneous (CFC) syndrome, Noonan syndrome (NS), and Costello syndrome (CS) are clinically related developmental disorders that have been recently linked to mutations in the RAS/MEK/ERK signalling pathway. This study was a mutation analysis of the KRAS, BRAF, MEK1 and MEK2 genes in a total of 130 patients (40 patients with a clinical diagnosis of CFC, 20 patients without HRAS mutations from the French Costello family support group, and 70 patients with NS without PTPN11 or SOS1 mutations). BRAF mutations were found in 14/40 (35%) patients with CFC and 8/20 (40%) HRAS-negative patients with CS. KRAS mutations were found in 1/40 (2.5%) patients with CFC, 2/20 (10%) HRAS-negative patients with CS and 4/70 patients with NS (5.7%). MEK1 mutations were found in 4/40 patients with CFC (10%), 4/20 (20%) HRAS-negative patients with CS and 3/70 (4.3%) patients with NS, and MEK2 mutations in 4/40 (10%) patients with CFC. Analysis of the major phenotypic features suggests significant clinical overlap between CS and CFC. The phenotype associated with MEK mutations seems less severe, and is compatible with normal mental development. Features considered distinctive for CS were also found to be associated with BRAF or MEK mutations. Because of its particular cancer risk, the term "Costello syndrome" should only be used for patients with proven HRAS mutation. These results confirm that KRAS is a minor contributor to NS and show that MEK is involved in some cases of NS, demonstrating a phenotypic continuum between the clinical entities. Although some associated features appear to be characteristic of a specific gene, no simple rule exists to distinguish NS from CFC easily.
A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease, followed by whole exome sequencing of affected relatives, identified causative mutations in TGFB2. These mutations, a frameshift mutation in exon 6 and a nonsense mutation in exon 4, segregated with disease with a combined LOD score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified two additional TGFB2 mutations. TGFB2 encodes the transforming growth factor beta-2 (TGF-β2) and the mutations are predicted to cause haploinsufficiency for TGFB2, but aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency of TGFB2 predisposes to thoracic aortic disease, suggesting the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.