High concentrations of airborne particles have been associated with increased pulmonary and cardiovascular mortality, with indications of a specific toxicologic role for ultrafine particles (UFPs; particles < 0.1 μm). Within hours after the respiratory system is exposed to UFPs, the UFPs may appear in many compartments of the body, including the liver, heart, and nervous system. To date, the mechanisms by which UFPs penetrate boundary membranes and the distribution of UFPs within tissue compartments of their primary and secondary target organs are largely unknown. We combined different experimental approaches to study the distribution of UFPs in lungs and their uptake by cells. In the in vivo experiments, rats inhaled an ultrafine titanium dioxide aerosol of 22 nm count median diameter. The intrapulmonary distribution of particles was analyzed 1 hr or 24 hr after the end of exposure, using energy-filtering transmission electron microscopy for elemental microanalysis of individual particles. In an in vitro study, we exposed pulmonary macrophages and red blood cells to fluorescent polystyrene microspheres (1, 0.2, and 0.078 μm) and assessed particle uptake by confocal laser scanning microscopy. Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries. Particle uptake in vitro into cells did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions. Particles within cells are not membrane bound and hence have direct access to intracellular proteins, organelles, and DNA, which may greatly enhance their toxic potential.
So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.
Background: Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO 2 ) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO 2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions.
Epidemiologic studies have associated cardiovascular morbidity and mortality with ambient particulate air pollution. Particles smaller than 100 nm in diameter (ultrafine particles) are present in the urban atmosphere in very high numbers yet at very low mass concentration. Organs beyond the lungs are considered as targets for inhaled ultrafine particles, whereby the route of particle translocation deeper into the lungs is unclear. Five rats were exposed to aerosols of ultrafine titanium dioxide particles of a count median diameter of 22 nm (geometric standard deviation, GSD 1.7) for 1 hour. The lungs were fixed by intravascular perfusion of fixatives immediately thereafter. TiO(2) particles in probes of the aerosol as well as in systematic tissue samples were analyzed with a LEO 912 transmission electron microscope equipped with an energy filter for elemental microanalysis. The characteristic energy loss spectra were obtained by fast spectrum acquisition. Aerosol particles as well as those in the lung tissue were unambiguously identified by electron energy loss spectroscopy. Particles were mainly found as small clusters with a rounded shape. Seven percent of the particles in the lung tissue had a needle-like shape. The size distribution of the cluster profiles in the tissue had a count median diameter of 29 nm (GSD 1.7), which indicates no severe clustering or reshaping of the originally inhaled particles. Electron energy loss spectroscopy and related analytical methods were found to be suitable to identify and localize ultrafine titanium dioxide particles within chemically fixed and resin-embedded lung tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.