Automatic note-level transcription is considered one of the most challenging tasks in music information retrieval. The specific case of flamenco singing transcription poses a particular challenge due to its complex melodic progressions, intonation inaccuracies, the use of a high degree of ornamentation and the presence of guitar accompaniment. In this study, we explore the limitations of existing state of the art transcription systems for the case of flamenco singing and propose a specific solution for this genre: We first extract the predominant melody and apply a novel contour filtering process to eliminate segments of the pitch contour which originate from the guitar accompaniment. We formulate a set of onset detection functions based on volume and pitch characteristics to segment the resulting vocal pitch contour into discrete note events. A quantised pitch label is assigned to each note event by combining global pitch class probabilities with local pitch contour statistics. The proposed system outperforms state of the art singing transcription systems with respect to voicing accuracy, onset detection and overall performance when evaluated on flamenco singing datasets.
Flamenco is a music tradition from Southern Spain that attracts a growing community of enthusiasts around the world. Its unique melodic and rhythmic elements, the typically spontaneous and improvised interpretation, and its diversity regarding styles make this still largely undocumented art form a particularly interesting material for musicological studies. In prior works, it has already been demonstrated that research on computational analysis of flamenco music, despite it being a relatively new field, can provide powerful tools for the discovery and diffusion of this genre. In this article, we present
corpusCOFLA
, a data framework for the development of such computational tools. The proposed collection of audio recordings and metadata serves as a pool for creating annotated subsets that can be used in development and evaluation of algorithms for specific music information retrieval tasks. First, we describe the design criteria for the corpus creation and then provide various examples of subsets drawn from the corpus. We showcase possible research applications in the context of computational study of flamenco music and give perspectives regarding further development of the corpus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.