The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.
Figure 1. Monocular 3D shape and pose regression of 3D dogs from 2D images. Since 3D training data is limited, BARC uses breed information at training time via triplet and classification losses to learn how to regress realistic 3D shapes at test time.
The goal of this work is to reconstruct 3D dogs from monocular images. We take a model-based approach, where we estimate the shape and pose parameters of a 3D articulated shape model for dogs. We consider dogs as they constitute a challenging problem, given they are highly articulated and come in a variety of shapes and appearances. Recent work has considered a similar task using the multi-animal SMAL model, with additional limb scale parameters, obtaining reconstructions that are limited in terms of realism. Like previous work, we observe that the original SMAL model is not expressive enough to represent dogs of many different breeds. Moreover, we make the hypothesis that the supervision signal used to train the network, that is 2D keypoints and silhouettes, is not sufficient to learn a regressor that can distinguish between the large variety of dog breeds. We therefore go beyond previous work in two important ways. First, we modify the SMAL shape space to be more appropriate for representing dog shape. Second, we formulate novel losses that exploit information about dog breeds. In particular, we exploit the fact that dogs of the same breed have similar body shapes. We formulate a novel breed similarity loss, consisting of two parts: One term is a triplet loss, that encourages the shape of dogs from the same breed to be more similar than dogs of different breeds. The second one is a breed classification loss. With our approach we obtain 3D dogs that, compared to previous work, are quantitatively better in terms of 2D reconstruction, and significantly better according to subjective and quantitative 3D evaluations. Our work shows that a-priori side information about similarity of shape and appearance, as provided by breed labels, can help to compensate for the lack of 3D training data. This concept may be applicable to other animal species or groups of species. We call our method BARC (Breed-Augmented Regression using Classification). Our code is publicly available for research purposes at https://barc.is.tue.mpg.de/.
Background SegmentsFigure 1: We present a method to learn a mapping between 2D pixels and deformable 3D models in an unsupervised way. We achieve this by using a chained cycle architecture between 2D images, a semantic encoding as latent appearance vector, background and segments, and the parameters of a 3D body model. Our model can be used in both directions: to automatically recover 3D parameters from 2D data and to generate renderings with varying appearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.